Citation: |
Wenchao Min, Hao Sun, Qilian Zhang, Zhiying Chen, Yanhui Zhang, Guanghui Yu, Xiaowei Sun. A comparative study of Ge/Au/Ni/Au-based ohmic contact on graphene[J]. Journal of Semiconductors, 2014, 35(5): 056001. doi: 10.1088/1674-4926/35/5/056001
****
W C Min, H Sun, Q L Zhang, Z Y Chen, Y H Zhang, G H Yu, X W Sun. A comparative study of Ge/Au/Ni/Au-based ohmic contact on graphene[J]. J. Semicond., 2014, 35(5): 056001. doi: 10.1088/1674-4926/35/5/056001.
|
A comparative study of Ge/Au/Ni/Au-based ohmic contact on graphene
DOI: 10.1088/1674-4926/35/5/056001
More Information
-
Abstract
Superior graphene-metal contacts can improve the performance of graphene devices. We report on an experimental demonstration of Ge/Au/Ni/Au-based ohmic contact on graphene. The transfer length method (TLM) is adopted to measure the resistivity of graphene-metal contacts. We designed a process flow, which can avoid residual photoresist at the interface of metal and graphene. Additionally, rapid thermal annealing (RTA) at different temperatures as a post-processing method is studied to improve graphene-metal contact. The results reveal that the contact resistivity of graphene and Ge/Au/Ni/Au can reach 10-5 Ω· cm2 after RTA, and that 350℃ is optimum annealing temperature for the contact of graphene-Ge/Au/Ni/Au. This paper provides guidance for fabrication and applications of graphene devices.-
Keywords:
- ohmic contact,
- graphene,
- anneal
-
References
[1] Novoselov K S, Gein A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306:666 doi: 10.1126/science.1102896[2] Geim A K, Novoselov K S. The rise of graphene. Nature Mater, 2007, 6(3):652 http://www.doc88.com/p-991237495564.html[3] Castro A H, Guinea F, Novoselov K S, et al. The electronic properties of graphene. Rev Mordern Phys, 2009, 81:109 http://www.doc88.com/p-90894169535.html[4] Moon J S, Curtis D, Hu M, et al. Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electron Device Lett, 2009, 30(6):650 doi: 10.1109/LED.2009.2020699[5] Palacios T, Hsu A, Wang H. Applications of graphene devices in RF communications. IEEE Commun Mag, 2010, 48(6):122 doi: 10.1109/MCOM.2010.5473873[6] Dragoman M, Muller A A, Dragoman D, et al. Terahertz antenna based on graphene. J Appl Phys, 2010, 104313:107 http://ieeexplore.ieee.org/document/5472381/[7] Moon J S, Curtis D, Bui S, et al. Top-gated epitaxial graphene FETs on Si-face SiC wafers with a peak transconductance of 600 mS/mm. IEEE Electron Device Lett, 2010, 31(4):260 doi: 10.1109/LED.2010.2040132[8] Balci O, Kocabas C. Rapid thermal annealing of graphene-metal contact. Appl Phys Lett, 2012, 101(24):243105 doi: 10.1063/1.4769817[9] Robinson J A, LaBella M, Zhu M, et al. Contacting graphene. Appl Phys Lett, 2011, 98(5):053103 doi: 10.1063/1.3549183[10] Braslau N, Gunn J B, Staples J L. Metal-semiconductor contacts for GaAs bulk effect devices. Solid-State Electron, 1967, 10(15):138 http://www-physics.lbl.gov/~spieler/physics_198_notes/PDF/VIII-2-c-fab.pdf[11] Giovannetti G, Khomyakov P A, Brocks G, et al. Doping graphene with metal contacts. Phys Rev Lett, 2008, 101:026803 doi: 10.1103/PhysRevLett.101.026803[12] Moon J S, Antcliffe M, Seo H C. Ultra-low resistance ohmic contacts in graphene field effect transistors. Appl Phys Lett, 2012, 100(20):203512 doi: 10.1063/1.4719579[13] Berger H H. Contact resistance and contact resistivity. J Electrochem Soc, 1972, 119(4):507 doi: 10.1149/1.2404240[14] Nagashio K, Nishimura T, Kita K, et al. Contact resistivity and current flow path at metal/graphene contact. Appl Phys Lett, 2010, 97(14):143514 doi: 10.1063/1.3491804[15] Li X S, Cai W W, An J H, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932):1312 doi: 10.1126/science.1171245[16] Murrmann H, Widmann D. Current crowding on metal contacts to planar devices. IEEE Trans Electron Devices, 1969, 16(12):1022 doi: 10.1109/T-ED.1969.16904 -
Proportional views