Citation: |
Shanli Long, Yan Liu, Kejun He, Xinggang Tang, Qian Chen. 116 dB dynamic range CMOS readout circuit for MEMS capacitive accelerometer[J]. Journal of Semiconductors, 2014, 35(9): 095004. doi: 10.1088/1674-4926/35/9/095004
****
S L Long, Y Liu, K J He, X G Tang, Q Chen. 116 dB dynamic range CMOS readout circuit for MEMS capacitive accelerometer[J]. J. Semicond., 2014, 35(9): 095004. doi: 10.1088/1674-4926/35/9/095004.
|
116 dB dynamic range CMOS readout circuit for MEMS capacitive accelerometer
DOI: 10.1088/1674-4926/35/9/095004
More Information
-
Abstract
A high stability in-circuit reprogrammable technique control system for a capacitive MEMS accelerometer is presented. Modulation and demodulation are used to separate the signal from the low frequency noise. A low-noise low-offset charge integrator is employed in this circuit to implement a capacitance-to-voltage converter and minimize the noise and offset. The application-specific integrated circuit (ASIC) is fabricated in a 0.5 μm one-ploy three-metal CMOS process. The measured results of the proposed circuit show that the noise floor of the ASIC is -116 dBV, the sensitivity of the accelerometer is 66 mV/g with a nonlinearity of 0.5%. The chip occupies 3.5×2.5 mm2 and the current is 3.5 mA. -
References
[1] Lu C, Lemkin M, Boser B E. A monolithic surface micromachined accelerometer with digital output. IEEE J Solid-State Circuits, 1995, 30(12):1367 doi: 10.1109/4.482163[2] Luo H, Gang Z, Carley L R, et al. A post-CMOS micromachined lateral accelerometer. J Microelectromech Syst, 2002, 11(3):188 doi: 10.1109/JMEMS.2002.1007397[3] Chae J, Kulah H, Najafi K. A monolithic three-axis micro-g micromachined silicon capacitive accelerometer. J Microelectromech Syst, 2005, 14(2):235 doi: 10.1109/JMEMS.2004.839347[4] Yazdi N, Ayazi F, Najafi K. Micromachined inertial sensors. Proc IEEE, 1998, 86(8):1640 doi: 10.1109/5.704269[5] Chen J, Ni X, Mo B. A low noise CMOS charge sensitive preamplifier for MEMS capacitive accelerometer readout. 7th International Conference on ASIC Proceedings, 2007, 1:490 http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.ieee-000004415674[6] Geen J A, Sherman S J, Chang J F, et al. Single-chip surface micro machined integrated gyroscope with 50°/h Allan deviation. IEEE J Solid-State Circuits, 2002, 37(12):1860 doi: 10.1109/JSSC.2002.804345[7] Saukoshi M, Aaltonen L, Halonen K, et al. Fully integrated charge sensitive amplifier for readout of micromechanical capacitive sensors. ISCAS, 2005:5377 http://ieeexplore.ieee.org/document/1465851/[8] Enz C C, Temes G C. Circuit techniques for reducing the effects of op-amp imperfections:autozeroing, correlated double sampling, and chopper stabilization. Proc IEEE, 1996, 84(11):1584 doi: 10.1109/5.542410[9] Yin Tao, Zhang Chong, Wu Huanming, et al. A 97 dB dynamic range CSA-based readout circuit with analog temperature compensation for MEMS capacitive sensors. Journal of Semiconductors, 2013, 34(11):115005 doi: 10.1088/1674-4926/34/11/115005[10] Ranganathan S, Inerfield M, Roy S, et al. Sub-femtofarad capacitive sensing for microfabricated transducer using correlated double sampling and delta modulation. IEEE Trans Circuits Syst, 2000, 47(11):1170 doi: 10.1109/82.885125[11] Wu J, Fedder G K, Carley L R. A low-noise low-offset capacitive sensing amplifier for a 50-μ g/Hz monolithic CMOS MEMS accelerometer. IEEE J Solid-State Circuits, 2004, 39(5):722 doi: 10.1109/JSSC.2004.826329[12] Tavakoli M, Sarpeshkar R. An offset-canceling low-noise lock-in architecture for capacitive sensing. IEEE J Solid-State Circuits, 2003, 38(2):244 doi: 10.1109/JSSC.2002.807173[13] Sedra A S, Smith K C. Microelectronic circuits. 6th ed. New York:Oxford University Press, 2010:63[14] Aragonés R, Oliver J, Ferrerl C. A 23 ppm/℃ readout circuitry improvement for capacitive sensor acquisition platforms. IEEE 5th International Conference on Sensing Technology, 2011:628 http://www.mendeley.com/research/23ppm-c-readout-circuitry-improvement-capacitive-sensor-acquisition-platforms/[15] Dei M, Marchetti E, Bruschi P. A micro power capacitive sensor readout channel based on the chopper modulation technique. IEEE Prime Conference, 2007:113 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4401824&punumber%3D4401781[16] Ko H, Cho D D. Highly programmable temperature compensated readout circuit for capacitive microaccelerometer. Sensors and Actuators A, 2010, 158:72 doi: 10.1016/j.sna.2009.12.017 -
Proportional views