Citation: |
Jie Su, Tong Liu, Jingming Liu, Jun Yang, Guiying Shen, Yongbiao Bai, Zhiyuan Dong, Youwen Zhao. Carbon agent chemical vapor transport growth of Ga2O3 crystal[J]. Journal of Semiconductors, 2016, 37(10): 103004. doi: 10.1088/1674-4926/37/10/103004
****
J Su, T Liu, J M Liu, J Yang, G Y Shen, Y B Bai, Z Y Dong, Y W Zhao. Carbon agent chemical vapor transport growth of Ga2O3 crystal[J]. J. Semicond., 2016, 37(10): 103004. doi: 10.1088/1674-4926/37/10/103004.
|
Carbon agent chemical vapor transport growth of Ga2O3 crystal
DOI: 10.1088/1674-4926/37/10/103004
More Information
-
Abstract
Beta-type gallium oxide (β-Ga2O3) is a new attractive material for optoelectronic devices. Different methods had been tried to grow high quality β-Ga2O3 crystals. In this work, crystal growth of Ga2O3 has been carried out by chemical vapor transport (CVT) method in a closed quartz tube using C as transport agent and sapphire wafer as seed. The CVT mass flux has been analyzed by theoretical calculations based on equilibrium thermodynamics and 1D diffusional mass transport. The crystal growth experimental results are in agreement with the theoretical predictions. Influence factors of Ga2O3 crystal growth, such as temperature distribution, amount of C as transport agent used, have also been discussed. Structural (XRD) and optical (Raman spectroscopy, photoluminescence spectrum) properties of the CVT-Ga2O3 crystal are presented. -
References
[1] Galazka Z, Uecker R, Irmscher K, et al. Czochralski growth and characterization of β-Ga2O3 single crystals. Cryst Res Technol, 2010, 45: 1229 doi: 10.1002/crat.v45.12[2] Zhong M Z, Wei Z M, Meng X Q, et al. High-performance single crystalline UV photodetectors of β-Ga2O3. J Alloys Compd, 2015, 619: 572 doi: 10.1016/j.jallcom.2014.09.070[3] Oshima T, Okuno T, Fujita S. Ga2O3 Thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Jpn J Appl Phys, 2007, 46: 7217 doi: 10.1143/JJAP.46.7217[4] Su J K, Sang Y P, Kyeong H K, et al. Ga2O3:ITO transparent conducting electrodes for near-ultraviolet light-emitting diodes. IEEE Electron Device Lett, 2014, 35: 232 doi: 10.1109/LED.2013.2292080[5] Zhang L C, Zhao F Z, Wang F F, et al. Improvement in electroluminescence performance of n-ZnO/Ga2O3/p-GaN heterojunction light-emitting diodes. Chin Phys B, 2013, 22: 128502 doi: 10.1088/1674-1056/22/12/128502[6] Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 2012, 100: 013504 doi: 10.1063/1.3674287[7] Samedov K, Aksu Y, Driess M. From molecular gallium and indium siloxide precursors to amorphous semiconducting transparent oxide layers for applications in thin-film field-effect transistors. Chem Plus Chem, 2012, 77: 663[8] Jin C, Park S, Kim H, et al. Ultrasensitive multiple networked Ga2O3-core/ZnO-shell nanorod gas sensors. Sensor Actuat B, 2012, 161: 223 doi: 10.1016/j.snb.2011.10.023[9] Geller S. Crystal structure of β-Ga2O3. J Chem Phys, 1960, 33: 676 doi: 10.1063/1.1731237[10] Razeghi M, Allen L P, Flint J P, et al. Manufacturing of 100 mm diameter GaSb substrates for advanced space based applications. Proc of SPIE, 2012, 8268: 826817 doi: 10.1117/12.904777[11] Roy R, Hill V G, Osborn E F. Polymorphism of Ga2O3 and the system Ga2O3-H2O. J Am Chem Soc, 1952, 74: 719 doi: 10.1021/ja01123a039[12] Tomm Y, Ko J M, Yoshikawa A, et al. Floating zone growth of β-Ga2O3: a new window material for optoelectronic device applications. Sol Energ Mat Sol C, 2001, 66: 369 doi: 10.1016/S0927-0248(00)00196-3[13] Tippins H. Optical absorption and photoconductivity in the band edge of β-Ga2O3. Phys Rev, 1965, 140: A316 doi: 10.1103/PhysRev.140.A316[14] Hajnal Z, Miro J, Kiss G, et al. Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3. J Appl Phys, 1999, 86: 3792 doi: 10.1063/1.371289[15] Yan Jinliang, Qu Chong. Electronic structure and optical properties of F-doped β-Ga2O3 from first principles calculations. Journal of Semiconductors, 2016, 37(4): 042002 doi: 10.1088/1674-4926/37/4/042002[16] Guo Y R, Yan H Y, Song Q G, et al. Electronic structure and magnetic interactions in Zn-doped β-Ga2O3 from first-principles calculations. Comp Mater Sci, 2014, 87: 198 doi: 10.1016/j.commatsci.2014.02.020[17] Zhao Yinnü, Yan Jinliang. First-principles study of n-type tin/fluorine co-doped beta-gallium oxides. Journal of Semiconductors, 2015, 36(8): 082004 doi: 10.1088/1674-4926/36/8/082004[18] Garton G, Smith S H, Wanklyn B M. Crystal growth from the flux systems PbO-V2O5 and Bi2O3-V2O5. J Cryst Growth, 1972, 13/14: 588 doi: 10.1016/0022-0248(72)90523-4[19] Chani V I, Inoue K, Shimamura K, et al. Segregation coefficients in β-Ga2O3 grown from a B2O3 based flux. J Cryst Growth, 1993, 132: 335 doi: 10.1016/0022-0248(93)90278-5[20] Chase A B. Growth of β-Ga2O3 by the verneuil technique. J Am Ceram Soc, 1964, 47: 470 doi: 10.1111/jace.1964.47.issue-9[21] Lorenz M R, Woods J F, Gambino R J. Some electrical properties of the semiconductor β-Ga2O3. J Phys Chem Solids, 1967, 28: 403 doi: 10.1016/0022-3697(67)90305-8[22] Matsumoto T, Aoki M, Kinoshita A, et al. Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3. Jpn J Appl Phys, 1974, 13: 1578 doi: 10.1143/JJAP.13.1578[23] Pajaczkowska A, Juskowiak H. On the chemical transport of gallium oxide in the Ga2O3/N-H-CI system. J Cryst Growth, 1986, 79: 421 doi: 10.1016/0022-0248(86)90471-9[24] Zhang J G, Li B, Xia C T, et al. Single crystal β-Ga2O3: Cr grown by floating zone technique and its optical properties. Science in China Series E, 2007, 50: 51[25] Zhang J, Li B, Xia C, et al. Growth and spectral characterization of β-Ga2O3 single crystals. J Phys Chem Solids, 2006, 67: 2448 doi: 10.1016/j.jpcs.2006.06.025[26] Galazka Z, Irmscher K, Uecker R, et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method. J Cryst Growth, 2014, 404: 184 doi: 10.1016/j.jcrysgro.2014.07.021[27] Oishi T, Harada K, Koga Y, et al. Conduction mechanism in highly doped β-Ga2O3 (201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes. Jpn J Appl Phys, 2016, 55: 030305 doi: 10.7567/JJAP.55.030305[28] Oishi T, Koga Y, Harada K, et al. High-mobility β-Ga2O3 (201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Appl Phys Express, 2015, 8: 031101 doi: 10.7567/APEX.8.031101[29] Toor H L. Diffusion in three-component gas mixtures. AIChE J, 1957, 3: 198 doi: 10.1002/(ISSN)1547-5905[30] Wiedemeier H, Chandra D, Klaessig F C. Diffusive and convective vapor transport in the GeSe-GeI4 system. J Cryst Growth, 1980, 51: 345[31] Klosse K. A new productivity function and stability criterion in chemical vapor transport processes. J Solid State Chem, 1975, 15: 105 doi: 10.1016/0022-4596(75)90233-9[32] Paorici C, Pelosi C, Attolini G, et al. Closed-tube chemical-transport mechanisms in the Cd:Te:H:Cl:N system. J Cryst Growth, 1975, 28: 358 doi: 10.1016/0022-0248(75)90072-X[33] Paorici C, Pelosi C. Kinetics of vapour growth in the system CdS:I2. J Cryst Growth, 1976, 35: 65 doi: 10.1016/0022-0248(76)90245-1[34] Scehla R A. Estimated viscosities and thermal conductivities of gases at high temperatures. Cleveland: Lewis Research Center, 1962, R-132[35] Dhanaraj G, Byrappa K, Prasad V, et al. Handbook of crystal growth. Springer, 2010[36] Dohy D, Lucazeau G. Raman spectra and valence force field of single-crystalline β-Ga2O3. J Solid State Chem, 1982, 45: 180 doi: 10.1016/0022-4596(82)90274-2[37] Harwig T, Kellendonk F. Some observations on the photoluminescence of doped β-galliumsesquioxide. J Solid State Chem, 1978, 24: 255 doi: 10.1016/0022-4596(78)90017-8[38] Vasil'tsiv V I, Zakharko M Y, Prim I Y. On the nature of blue and green luminescence bands of β-Ga2O3. Ukr Fiz Zh, 1988, 33: 1320 -
Proportional views