Citation: |
Shuo Zhang, Yun Zhang, Xiang Chen, Yanan Guo, Jianchang Yan, Junxi Wang, Jinmin Li. The effect of AlN/AlGaN superlattices on crystal and optical properties of AlGaN epitaxial layers[J]. Journal of Semiconductors, 2017, 38(11): 113002. doi: 10.1088/1674-4926/38/11/113002
****
S Zhang, Y Zhang, X Chen, Y N Guo, J C Yan, J X Wang, J M Li. The effect of AlN/AlGaN superlattices on crystal and optical properties of AlGaN epitaxial layers[J]. J. Semicond., 2017, 38(11): 113002. doi: 10.1088/1674-4926/38/11/113002.
|
The effect of AlN/AlGaN superlattices on crystal and optical properties of AlGaN epitaxial layers
DOI: 10.1088/1674-4926/38/11/113002
More Information
-
Abstract
We investigate the effect of AlN/AlGaN superlattices (SLs) on crystal and optical properties of AlGaN epitaxial layers. The result indicates that the crystal quality of AlGaN layers is consistent within a wide range of SLs thicknesses, while the optical properties are opposite. With SLs thickness decreasing from 20/44 to 17/36 and 15/29 nm, the full-width at half maximum of X-ray rocking curves for (0002)- and ($10\bar 12$ )-plane of n-AlGaN layers grown on SLs are consistent of around 250 arcsec and 700 arcsec, respectively. Meanwhile, the center of the low optical transmittance band decreases from 326 to 279 nm and less than 266 nm as the SLs thickness decreases. 280 nm deep ultraviolet light-emitting diodes (DUV-LEDs) structures are further regrown on the n-AlGaN layers. The electroluminescent intensities of samples are 30% higher than that of the sample whose low optical transmittance band appears around 279 nm. Optical simulations reveal that the SLs acts as distributed Bragg reflectors, thus less photons of the corresponding wavelength escape from the sapphire backside.-
Keywords:
- AlN,
- AlGaN,
- superlattices,
- crystal quality,
- transmittance,
- light-emitting diodes
-
References
[1] Omnes F, Marenco N, Beaumont B, et al. Metalorganic vapor-phase epitaxy-grown AlGaN materials for visible-blind ultraviolet photodetector applications. J Appl Phys, 1999, 86: 5286 doi: 10.1063/1.371512[2] Li J M, Liu Z, Liu Z Q, et al. Advances and prospects in nitrides based light-emitting-diodes. J Semicond, 2016, 36: 061001[3] Yoshida H, Yamashita Y, Kuwabara M, et al. Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode. Appl Phys Lett, 2008, 93: 3[4] Kneissl T K M, Chua C. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Technol, 2011, 26: 014036 doi: 10.1088/0268-1242/26/1/014036[5] Hideki H, Noritoshi M, Sachie F, et al. Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes. Jpn J Appl Phys, 2014, 53: 100209 doi: 10.7567/JJAP.53.100209[6] Dong P, Yan J, Zhang Y, et al. AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency. J Cryst Growth, 2014, 395: 9 doi: 10.1016/j.jcrysgro.2014.02.039[7] Khan M A, Kuznia J N, Skogman R A, et al. Low-pressure metalorganic chemical vapor-deposition of AlN over sapphire substrates. Appl Phys Lett, 1992, 61: 2539 doi: 10.1063/1.108144[8] Zhang J P, Wang H M, Gaevski M E, et al. Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management. Appl Phys Lett, 2002, 80: 3542 doi: 10.1063/1.1477620[9] Sun W H, Zhang J P, Yang J W, et al. Fine structure of AlN/AlGaN superlattice grown by pulsed atomic-layer epitaxy for dislocation filtering. Appl Phys Lett, 2005, 87: 3[10] Wang H M, Zhang J P, Chen C Q, et al. AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire. Appl Phys Lett, 2002, 81: 604 doi: 10.1063/1.1494858[11] Peng M Z, Guo L W, Zhang J, et al. Reducing dislocations of Al-rich AlGaN by combining AlN buffer and AlN/Al0.8Ga0.2N superlattices. J Cryst Growth, 2008, 310: 1088 doi: 10.1016/j.jcrysgro.2008.01.006[12] Tsukihara M, Sumiyoshi K, Okimoto T, et al. Effect of middle temperature intermediate layer on crystal quality of AlGaN grown on sapphire substrates by metalorganic chemical vapor deposition. J Cryst Growth, 2007, 300: 190 doi: 10.1016/j.jcrysgro.2006.11.011[13] Liu H, Zhao H, Hou J, et al. Enhanced light extraction in AlInGaN UV light-emitting diodes by an embedded AlN/AlGaN distributed bragg reflector. Chin Phys Lett, 2012, 29: 4[14] Yang Y, Lin Y, Xiang P, et al. Vertical-Conducting InGaN/GaN multiple quantum wells LEDs with AlN/GaN distributed bragg reflectors on Si(111) substrate. Appl Phys Express, 2014, 7: 4[15] Dion J, Fareed Q, Zhang B, et al. Structural characterization of highly conducting AlGaN (x > 50%) for deep-ultraviolet light-emitting diode. J Electron Mater, 2011, 40: 377 doi: 10.1007/s11664-010-1493-9[16] Coldern S W C L A, Mashanovitch M L. Diode lasers and photonic integrated circuits. John Wiley & Sons, 2012: 218[17] Phillios J C. Bonds and bands in semiconductors in tenth international conference on solid state lighting. Ferguson I, et al. ed. New York: Academic, 1973[18] Peng T, Piprek J. Refractive index of AlGaInN alloys. Electron Lett, 1996, 32: 2285 doi: 10.1049/el:19961546[19] Brunner D, Angerer H, Bustarret E, et al. Optical constants of epitaxial AlGaN films and their temperature dependence. J Appl Phys, 1997, 82: 5090 doi: 10.1063/1.366309[20] iang L F, Shen W Z, Ogawa H, et al. Temperature dependence of the optical properties in hexagonal AlN. J Appl Phys, 2003, 94: 5704 doi: 10.1063/1.1616988 -
Proportional views