Citation: |
Xiaodan Zhao, Yibiao Yang, Zhihui Chen, Yuncai Wang, Hongming Fei, Xiao Deng. Ultra-wide tuning single channel filter based on one-dimensional photonic crystal with an air cavity[J]. Journal of Semiconductors, 2017, 38(2): 023004. doi: 10.1088/1674-4926/38/2/023004
****
X D Zhao, Y B Yang, Z H Chen, Y C Wang, H M Fei, X Deng. Ultra-wide tuning single channel filter based on one-dimensional photonic crystal with an air cavity[J]. J. Semicond., 2017, 38(2): 023004. doi: 10.1088/1674-4926/38/2/023004.
|
Ultra-wide tuning single channel filter based on one-dimensional photonic crystal with an air cavity
DOI: 10.1088/1674-4926/38/2/023004
More Information
-
Abstract
By inserting an air cavity into a one-dimensional photonic crystal of LiF/GaSb, a tunable filter covering the whole visible range is proposed. Following consideration of the dispersion of the materials, through modulating the thickness of the air cavity, we demonstrate that a single resonant peak can shift from 416.1 to 667.3 nm in the band gap at normal incidence by means of the transfer matrix method. The research also shows that the transmittance of the channel can be maximized when the number of periodic LiF/GaSb layers on one side of the air defect layer is equal to that of the other side. When adding a period to both sides respectively, the full width at half maximum of the defect mode is reduced by one order of magnitude. This structure will provide a promising approach to fabricate practical tunable filters in the visible region with ultra-wide tuning range. -
References
[1] Dwivedi R P, Lee E H. A compact plasmatic tunable filter using elasto-optic effects. Opt Laser Technol, 2012, 7(44):2130[2] Li S H, Zhong S L, Xu J, et al. Fabrication and characterization of a thermal tunable bulk-micromachined optical filter. Sensor Actuat A, 2012, 188(12):298 http://cn.bing.com/academic/profile?id=0578790bcd44b049a1314088ebeaad29&encoded=0&v=paper_preview&mkt=zh-cn[3] Fuh A Y G, Ho S J, Wu S T. Optical filter with tunable wavelength and bandwidth based on phototunable cholesteric liquid crystals. Appl Opt, 2014, 8(53):1658 http://cn.bing.com/academic/profile?id=bcced5e8c3835657821333be3665a4dc&encoded=0&v=paper_preview&mkt=zh-cn[4] Wang H, Zheng J Y, Li W. Widely tunable single-bandpass microwave photonicfilter based on polarization processing of a nonsliced broadband optical source. Opt Lett, 2013, 38(22):4857 doi: 10.1364/OL.38.004857[5] Geng Z Q, Wu N J. A low power wide tuning range baseband filter for multistandard transceivers. J Semicond, 2015, 36(4):045006 doi: 10.1088/1674-4926/36/4/045006[6] Amin N M, Wang Z G, Li Z Q. An I/Q mixer with an integrated differential quadrature all-pass filter for on-chip quadrature LO signal generation. J Semicond, 2015, 36(5):055001 doi: 10.1088/1674-4926/36/5/055001[7] Sabaté N, Rubio R, Calaza C, et al. Mirror electrostatic actuation of a medium-infrared tunable Fabry-Perot interferometer based on a surface micromachining process. Sensor Actuat A, 2005, 123:584[8] Liu K, Jing W C, Peng G D, et al. Wavelength sweep of intracavity fiber laser for low concentration gas detection. IEEE Photon Technol Lett, 2008, 20(18):1515 doi: 10.1109/LPT.2008.928526[9] Niyazi M, Amirkhani A, Mosavi M R. Investigation and simulation of a two-channel dropfilter with tunable double optical resonators. Superconduct Novel Magn, 2014, 27(3):827 doi: 10.1007/s10948-013-2362-6[10] Zhai L Y, Xu J, Wu Y M. Design and fabrication of independentcavity FP tunable filter. Opt Commun, 2013, 297(12):154 http://cn.bing.com/academic/profile?id=780720e645a69672226c920f2f222886&encoded=0&v=paper_preview&mkt=zh-cn[11] Wang J, Wen T D, Xu L P, et al. Influence of incident angle on the defect mode of locally doped photonic crystal. J Semicond, 2013, 11(34):112003 http://cn.bing.com/academic/profile?id=686f69de127be35545dbb082a0f56fa2&encoded=0&v=paper_preview&mkt=zh-cn[12] John S. Strong localization of photons in certain disordered dielectric superlattice. Phys Rev Lett, 1987, 23(58):2486[13] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett, 1987, 20(58):2059 http://cn.bing.com/academic/profile?id=0eb77c66e81b81c21fbb85b7cd3d630b&encoded=0&v=paper_preview&mkt=zh-cn[14] Shramkova O, Schuchinsky A. Harmonic generation and wave mixing in nonlinear metamaterials and photonic crystals. Int J RF Microwave CAE, 2012, 4(22):469[15] Tang T T, Liu W L, Gao X Y, et al. Band gaps and nonlinear defect modes in one-dimensional photonic crystals with anisotropic single-negative metamaterials. Opt Laser Technol, 2011, 6(43):1016 http://cn.bing.com/academic/profile?id=e53a9254ae9714770425089a872b148c&encoded=0&v=paper_preview&mkt=zh-cn[16] Shen Y, Ye D, Celanovic I, et al. Optical broadband angular selectivity. Science, 2014, 6178(343):1499 http://cn.bing.com/academic/profile?id=091dbc42bdef1b5e797050a74db2ae38&encoded=0&v=paper_preview&mkt=zh-cn[17] Wang H, Wang G J, Han Y L, et al. Tunable double-channel filter based on defect mode splitting of one-dimensional magnetic photonic crystal. Opt Commun, 2012, 21(285):4558 http://cn.bing.com/academic/profile?id=de53b636e5c641d79a254f407e6286be&encoded=0&v=paper_preview&mkt=zh-cn[18] Yu G J, Pu S L, Wang X, et al. Tunable one-dimensional photonic crystals based on magnetic fluids. Optik, 2013, 17(124):2713 http://cn.bing.com/academic/profile?id=aa05257c651bae56418634e826c4f41b&encoded=0&v=paper_preview&mkt=zh-cn[19] Liu C Y, Peng Y T, Wang J Z, et al. Creation of tunable bandgaps in a three-dimensional anisotropic photonic crystal modulated by a nematic liquid crystal. Phys B, 2007, 1(388):124 http://cn.bing.com/academic/profile?id=e74c969394deaffa9fad42a69073b855&encoded=0&v=paper_preview&mkt=zh-cn[20] Zhang W T, Han P D, Lan A D, et al. Defect modes tuning of one-dimensional photonic crystals with lithium niobate and silver material defect. Physica E, 2012, 4(44):813 http://cn.bing.com/academic/profile?id=adc6298c75c324030051c2e02de38522&encoded=0&v=paper_preview&mkt=zh-cn[21] Fegadolli W S, Vargas G, Wang X, et al. Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control. Opt Express, 2012, 13(20):14722 http://cn.bing.com/academic/profile?id=4dcc06442afb07749bee20468bc8019e&encoded=0&v=paper_preview&mkt=zh-cn[22] Chang Y H, Jhu Y Y, Wu C J. Temperature dependence of defect mode in a defective photonic crystal. Opt Commun, 2012, 6(285):1501 http://cn.bing.com/academic/profile?id=a15a019bace26254a5fb98cdcb496baf&encoded=0&v=paper_preview&mkt=zh-cn[23] Hu X Y, Liu Z, Gong Q H. Tunable multichannel filter in photonic crystal heterostructure containing permeability-negative materials. Phys Lett A, 2008, 3(372):333 http://cn.bing.com/academic/profile?id=f5babc9e1d94a8c1fc14dfe6782fc0a5&encoded=0&v=paper_preview&mkt=zh-cn[24] Yang D, Tian H, Ji Y. High-Q and high-sensitivity widthmodulated photonic crystal single nanobeam air-mode cavity for refractive index sensing. Appl Opt, 2015, 54(1):1 doi: 10.1364/AO.54.000001[25] Kuramochi E, Taniyama H, Tanabe T, et al. Ultrahigh-Q onedimensional photonic crystal nanocavities with modulated modegap barriers on SiO2 claddings and on air claddings. Opt Express, 2010, 18(15):15859 doi: 10.1364/OE.18.015859[26] Pendry J B, MacKinnon A. Calculation of photon dispersion relations. Phys Rev Lett, 1992, 19(69):2772 http://cn.bing.com/academic/profile?id=aced3af7d3e9fd0c57e6c8cbba359209&encoded=0&v=paper_preview&mkt=zh-cn[27] Weber M J. Handbook of optical materials:section 1. CRC Press LLC, American, 2003[28] Li H H. Refractive index of alkali halides and its wavelength and temperature derivatives. J Phys Chem Ref Data, 1976, 2(5):329[29] Aspnes D E, Studna A A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys Rev B, 1983, 2(27):985 http://cn.bing.com/academic/profile?id=20bf165dc96b8b9d7792c99b313b0928&encoded=0&v=paper_preview&mkt=zh-cn[30] Bayindir M, Temelkuran B, Ozbay E. Tight-binding description of the coupled defect modes in three-dimensional photonic crystals. Phys Rev Lett, 2000, 10(84):2140 http://cn.bing.com/academic/profile?id=ea775932761e3ed0b753892e1c0d1d6b&encoded=0&v=paper_preview&mkt=zh-cn[31] Joannopoulos J D, Johnson S G, Winn J N, et al. Photonic crystals:molding the flow of light. 2nd ed. New Jersey:Princeton University Press, 2008 -
Proportional views