Citation: |
Jie Su, Tong Liu, Jingming Liu, Jun Yang, Guiying Shen, Yongbiao Bai, Zhiyuan Dong, Fangfang Wang, Youwen Zhao. Electrical and optical property of annealed Te-doped GaSb[J]. Journal of Semiconductors, 2017, 38(4): 043001. doi: 10.1088/1674-4926/38/4/043001
****
J Su, T Liu, J M Liu, J Yang, G Y Shen, Y B Bai, Z Y Dong, F F Wang, Y W Zhao. Electrical and optical property of annealed Te-doped GaSb[J]. J. Semicond., 2017, 38(4): 043001. doi: 10.1088/1674-4926/38/4/043001.
|
Electrical and optical property of annealed Te-doped GaSb
DOI: 10.1088/1674-4926/38/4/043001
More Information
-
Abstract
GaSb is the most suitable substrate in the epitaxial growth of mixed semiconductors of GaSb system. In this work, Te-doped GaSb bulk crystals with different doping concentration have been annealed at 550 ℃ for 100 h in ambient antimony. The annealed samples have been studied by Hall effect measurement, infrared (IR) optical transmission, Glow discharge mass spectroscopy (GDMS) and photoluminescence (PL) spectroscopy. After annealing, Te-doped GaSb samples exhibit a decrease of carrier concentration and increase of mobility, along with an improvement of below gap IR transmission. Native acceptor related electrical compensation analysis suggests a formation of donor defect with deeper energy level. The mechanism of the variation of the defect and its influence on the material properties are discussed. -
References
[1] Dutta P S, Bhat H L. The physics and technology of gallium antimonide: an emerging optoelectronic material. J Appl Phys 1997, 81: 5821 doi: 10.1063/1.365356[2] Milne A G, Polyako A Y. Gallium antimonide device related properties. Solid-State Electron, 1993, 36: 803 doi: 10.1016/0038-1101(93)90002-8[3] Lee M, Nicholas D J, Singer K E, et al. A photoluminescence and Hall effect study of GaSb grown by molecular beam epitaxy. J Appl Phys, 1986, 59: 2895 doi: 10.1063/1.336948[4] Tao D Y, Cheng Y, Liu J M, et al. Chemical and electrical properties of (NH4)2S passivated GaSb surface. J Semicond, 2015, 36(7): 073006 doi: 10.1088/1674-4926/36/7/073006[5] Segawa K, Miki H, Otsubo M, et al. Coherent Gunn oscillations in GaxIn1-xSb. Electron Lett, 1976, 12: 124 doi: 10.1049/el:19760098[6] Hilderbrand O, Kuebart W, Benz K W, et al. Ga1-xAlxSb avalanche photodiodes resonant impact ionization with very high ratio of ionization coefficients. IEEE J Quantum Electron, 1981, 17: 284 doi: 10.1109/JQE.1981.1071068[7] Esaki L. InAs-GaSb superlattices-synthesized semiconductors and semimetals. J Cryst Growth, 1981, 52: 227 doi: 10.1016/0022-0248(81)90198-6[8] Passlack M, Schubert E F, Hobson W S, et al. Ga2O3 films for electronic and optoelectronic applications. J Appl Phys, 1995, 77: 686 doi: 10.1063/1.359055[9] Van Der Mbulen Y J. Growth properties of GaSb: the structure of the residual acceptor centres. J Phys Chem Solids, 1967, 28: 25 doi: 10.1016/0022-3697(67)90193-X[10] Briggs A G, Challis L J, Phonon scattering by acceptor defects in GaSb and GaSb-InSb alloys. J Phys C, 1969, 2: 1353 doi: 10.1088/0022-3719/2/7/128[11] Vlasov A S, Rakova E P, Khvostikov V P, et al. Native defect concentration in Czochralski-grown Te-doped GaSb by photoluminescence. Sol Energy Mater Sol Cells, 2010, 94: 1113 doi: 10.1016/j.solmat.2010.02.038[12] Chen X F, Chen N F, Wang J L, et al. Chemical etching of a GaSb crystal incorporated with Mn grown by the Bridgman method under microgravity conditions. J Semicond, 2009, 30: 083006 doi: 10.1088/1674-4926/30/8/083006[13] Reijnen L, Brunton R, Grant I R. GaSb single-crystal growth by vertical gradient freeze. J Cryst Growth, 2005, 275: e595 doi: 10.1016/j.jcrysgro.2004.11.003[14] Lui M K, Ling C C. Liquid encapsulated Czochralski grown undoped p-type gallium antimonide studied by temperature-dependent Hall measurement. Semicond Sci Tech, 2005, 20: 1157 doi: 10.1088/0268-1242/20/12/002[15] Ling C C, Lui M K, Ma S K, et al. Nature of the acceptor responsible for p-type conduction in liquid encapsulated Czochralski-grown undoped gallium antimonide. Appl Phys Lett, 2004, 85: 384 doi: 10.1063/1.1773934[16] Sestakova V, Stepanek B. Doping of GaSb single crystals with various elements. J Cryst Growth, 1995, 146: 87 doi: 10.1016/0022-0248(94)00485-4[17] Levinshtein M, Rumyantskv S, Shur M. Handbook series on semiconductor parameters. Vol 2. Singapore: World Scientific, 1999[18] Liu N K, Zhu B S, Luo J S. Semiconductor physics. Beijing: Publishing House of Electronics Industry, 2008[19] Wu M C, Chen C C. Photoluminescence of liquid-phase epitaxial Te-doped GaSb. J Appl Phys, 1993, 73: 8495 doi: 10.1063/1.354085[20] Chandola A, Pino R, Dutta P S. Below bandgap optical absorption in tellurium-doped GaSb. Semicond Sci Tech, 2005, 20: 886 doi: 10.1088/0268-1242/20/8/046[21] Sharma P C, Verma G S. Hall coefficient, mobility, and resistivity of Te-doped GaSb samples. Phys Rev B, 1972, 5: 1535 doi: 10.1103/PhysRevB.5.1535[22] Lee M, Nicholas D J, Singer K E, et al. A photoluminescence and Hall-effect study of GaSb grown by molecular-beam epitaxy. J Appl Phys, 1986, 59: 2895 doi: 10.1063/1.336948[23] Kyuregya A S, Lazareva I K, Stuchebn V M, et al. Photoluminescence of gallium antimonide at high excitation levels.1. lightly doped GaSb. Sov Phys Semicond, 1972, 6: 208 https://www.researchgate.net/publication/292011201_PHOTOLUMINESCENCE_OF_GALLIUM_ANTIMONIDE_AT_HIGH_EXCITATION_LEVELS_-_2_HEAVILY_DOPED_GaSb[24] Iyer S, Small L, Hegde S M, et al. Low-temperature photoluminescence of Te-doped GaSb grown by liquid phase electroepitaxy. J Appl Phys, 1995, 77: 5902 doi: 10.1063/1.359170[25] Dutta P S, Koteswara Rao K S R, Bhat H L, et al. Photoluminescence studies in bulk gallium antimonide. Appl Phys A, 1995, 61: 149 doi: 10.1007/BF01538381[26] Nicholas D J, Lee M, Hamilton B, et al. Spectroscopic studies of shallow defects in MBE GaSb. J Cryst Growth, 1987, 81: 298 doi: 10.1016/0022-0248(87)90408-8[27] Hakala M, Puska M J, Nieminen R M. Native defects and self-diffusion in GaSb. J Appl Phys, 2002, 91: 4988 doi: 10.1063/1.1462844[28] Krause-Rehberg R, Leipner H S, Kupsch A, et al. Positron study of defects in as-grown and plastically deformed GaAs:Te. Phys Rev B, 1994, 49: 2385 doi: 10.1103/PhysRevB.49.2385 -
Proportional views