Citation: |
Evangelos I. Dimitriadis, Nikolaos Georgoulas. Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques[J]. Journal of Semiconductors, 2017, 38(5): 054001. doi: 10.1088/1674-4926/38/5/054001
****
E I Dimitriadis, N Georgoulas. Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques[J]. J. Semicond., 2017, 38(5): 054001. doi: 10.1088/1674-4926/38/5/054001.
|
Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques
DOI: 10.1088/1674-4926/38/5/054001
More Information
-
Abstract
A parametric study for a series of technological and geometrical parameters affecting rise time of Al/a-SiC/c-Si (p)/c-Si (n+)/Al thyristor-like switches, is presented here for the first time, using two-dimensional simulation techniques.By varying anode current values in simulation procedure we achieved very good agreement between simulation and experimental results for the rising time characteristics of the switch.A series of factors affecting the rising time of the switches are studied here.Two factors among all others studied here, exerting most significant influence, of more than one order of magnitude on the rising time, are a-SiC and c-Si (p) region widths, validating our earlier presented model for device operation.The above widths can be easily varied on device manufacture procedure.We also successfully simulated the rising time characteristics of our earlier presented simulated improved switch, with forward breakover voltage VBF=11 V and forward voltage drop VF=9.5 V at the ON state, exhibiting an ultra low rise time value of less than 10 ps, which in conjunction with its high anode current density values of 12 A/mm2 and also cheap and easy fabrication techniques, makes this switch appropriate for ESD protection as well as RF MEMS and NEMS applications.-
Keywords:
- simulation,
- amorphous SiC,
- switches,
- rise time,
- ESD protection
-
References
[1] Powell M J, Nicholls D H. Stability of amorphous silicon thin film transistors. IEE Proc I, 1983, 130: 2 http://journals.cambridge.org/article_S1946427400335667[2] Wang Y S, Zhang X M, Sheng W W, et al. Amorphous silicon emitter heterojunction UHF power transistors for handy transmitter. IEEE Electron Device Lett, 1990, 11: 187 doi: 10.1109/55.55245[3] Matsuoka T, Kuwano Y. Quality improvement in a-Si films and their application to a-Si solar cells. IEEE Trans Electron Devices, 1990, 37: 397 doi: 10.1109/16.46373[4] Louro P, Fernandes M, Fantoni A, et al. An amorphous SiC/Si photodetector with voltage selectable spectral response. Thin Solid Films, 2006, 511: 167 https://www.researchgate.net/profile/Carlos_Carvalho15/publication/243055936_An_amorphous_SICSI_image_photodetector_with_voltage-selectable_spectral_response/links/0c96051d03b4fcdc54000000.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail[5] Dimitriadis E I, Georgoulas H, Thanailakis A. New a-SiC, optically controlled, thyristor-like switch. Electron Lett, 1992, 28, 17: 1622 https://www.researchgate.net/publication/245273067_New_aSiC_optically_controlled_thyristor-like_switch[6] Dimitriadis E I, Girginoudi D, Thanailakis A, et al. New a-Si/c-Si and a-SiC/c-Si based optically controlled switching devices. Semicond Sci Technol, 1995, 10: 523 doi: 10.1088/0268-1242/10/4/024[7] Dimitriadis E I, Girginoudi D, Georgoulas N, et al. New highspeed a-Si/c-Si and a-SiC/c-Si based switches. Active and Passive Electronic Components, 1996, 19: 59 doi: 10.1155/1996/56983[8] Dimitriadis E I, Georgoulas N, Thanailakis A. Reversible and irreversible effects on the electrical characteristics of new highspeed a-Si and a-SiC switches. Microelectron J, 1998, 29: 5 doi: 10.1016/S0026-2692(97)00017-7[9] Costa A K, Camargo S S. Properties of amorphous SiC coatings deposited on WC-Co substrates. Mater Res, 2003, 6: 39 http://www.oalib.com/paper/891713[10] Xu J, Mei J, Chen D, et al. All amorphous SiC based luminescent microcavity. Diamond Relat Mater, 2005, 14: 1999 doi: 10.1016/j.diamond.2005.08.005[11] Wang W Q, Kalia R, Nakano A, et al. Nanoscale thermal property of amorphous SiC: a molecular dynamics study. MRS Proc, 2007: 1022E http://journals.cambridge.org/abstract_S1946427400039506[12] Schmidt H, Borchardt G, Geckle U, et al. Comparative study of trap-limited hydrogen diffusion in amorphous SiC, Si0.66C0.33N1.33, and SiN1.33 films. J Phys, 2006, 18: 5363 http://dialnet.unirioja.es/servlet/articulo?codigo=2069123[13] Park M G, Choi W S, Boo J H, et al. Characterization of amorphous SiC:H thin films grown by RF plasma enhanced CVD on annealing temperature. Journal de Physique Ⅳ (Proceedings), 2002, 12: 155 https://www.researchgate.net/publication/45689023_Characterization_of_amorphous_SICH_thin_films_grown_by_RF_plasma_enhanced_CVD_on_annealing_temperature[14] Sungtae K, Perepezko J H, Dong Z, et al. Interface reaction between Ni and amorphous SiC. J Electron Mater, 2004, 33: 1064 doi: 10.1007/s11664-004-0106-x[15] Iliescu C, Poenar D P. PECVD amorphous silicon carbide (α-SiC) layers for MEMS applications. Physics and Technology of Silicon Carbide Devices, InTech, 2012 http://www.intechopen.com/books/howtoreference/physics-and-technology-of-silicon-carbide-devices/pecvd-amorphous-silicon-carbide-sic-layers-for-mems-applications[16] Avram A, Bragaru A, Bangtao C, et al. Low stress PECVD amorphous silicon carbide for MEMS applications. Semiconductor Conference (CAS), 2010: 239 https://www.researchgate.net/profile/Ciprian_Iliescu/publication/241177105_Low_stress_PECVD_amorphous_silicon_carbide_for_MEMS_applications/links/54be718c0cf218d4a16a622f.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail[17] Zorman C A, Barnes A C. Silicon carbide BioMEMS, silicon carbide biotechnology: a biocompatible semiconductor for advanced biomedical devices and applications. Elsevier, 2012 http://www.worldcat.org/title/silicon-carbide-biotechnology-a-biocompatible-semiconductor-for-advanced-biomedical-devices-and-applications/oclc/839339335[18] Daves W, Krauss A, Behnel N, et al. Amorphous silicon carbidethin films (a-SiC:H) deposited by plasma-enhanced chemical vapor deposition as protective coatings for harsh environment applications. Thin Solid Films, 2011, 519(18): 5892 doi: 10.1016/j.tsf.2011.02.089[19] Shoji Y, Nakanishi K, Sakakibara Y, et al. Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications. Appl Phys Express, 2010, 3: 122201 doi: 10.1143/APEX.3.122201[20] Dimitriadis E I, Archontas N, Girginoudi D, et al. Two dimensional simulation and modeling of the electrical characteristics of the a-SiC/c-Si (p) based, thyristor like switches. Microelectron Eng, 2015, 133: 120 doi: 10.1016/j.mee.2014.11.006[21] Dimitriadis E I, Farmakis F, Girginoudi D, et al. Parametric study and improvement of the electrical characteristics of a-SiC/c-Si (p) based, thyristor like switches, using two dimensional simulation techniques. J Active Passive Electron Devices, 2015, 10: 283 https://www.researchgate.net/publication/281242088_Parametric_Study_and_Improvement_of_the_Electrical_Characteristics_of_a-SiCc-Sip_Based_Thyristor_Like_Switches_Using_Two_Dimensional_Simulation_Techniques[22] Parro R J, Scardelletti M C, Varaljay N, et al. Amorphous SiC as a structural layer in microbridge-based RF MEMS switches for use in software-defined radio. Solid State Electron, 2008, 52(10): 1647 doi: 10.1016/j.sse.2008.06.004[23] ATLAS Users Manual, SILVACO, Inc. , Santa Clara, CA, 2003[24] Hatzopoulos A T, Arpatzanis N, Tassis D H, et al. Electrical and noise characterization of bottom-gated nanocrystalline silicon thin-film transistors. J Appl Phys, 2006, 100: 114311 doi: 10.1063/1.2396795[25] Blicher A. Thyristor physics. Springer, 1976[26] Kuhl J, Gobel E O, Pfeiffer T, et al. Subpicosecond carrier trapping in high defect density amorphous Si and GaAs. Appl Phys A, 1984, 34(2): 105 doi: 10.1007/BF00614761[27] Wraback M, Chen L, Tauc J, et al. Picosecond photomodulation study of nanocrystalline hydrogenated silicon. Mater Res Soc Symp Proc, 1990, 164: 223 https://www.researchgate.net/publication/270524194_Picosecond_Photomodulation_Study_of_Nanocrystalline_Hydrogenated_Silicon[28] Esser A, Seibert K, Kurz H, et al. Ultrafast recombination and trapping in amorphous silicon. J Non-Crystal Solids, 1989, 114(2): 573 https://www.researchgate.net/publication/13295525_Ultrafast_recombination_and_trapping_in_amorphous_silicon -
Proportional views