J. Semicond. > 2018, Volume 39 > Issue 10 > 104006

SEMICONDUCTOR DEVICES

Ultralow specific ON-resistance high-k LDMOS with vertical field plate

Lijuan Wu, Limin Hu, Lin Zhu, Hang Yang, Bing Lei and Haiqing Xie

+ Author Affiliations

 Corresponding author: Lijuan Wu, 305719669@qq.com

DOI: 10.1088/1674-4926/39/10/104006

PDF

Turn off MathJax

Abstract: An ultralow specific on-resistance high-k LDMOS with vertical field plate (VFP HK LDMOS) is proposed. The high-k dielectric trench and highly doped interface N+ layer are made in bulk silicon to reduce the surface field of the drift region in the VFP HK LDMOS. The gate vertical field plate (VFP) pinning in the high-k dielectric trench can modulate the bulk electric field. The high-k dielectric not only provides polarized charges to assist depletion of the drift region, so that the drift region and high-k trench maintain charge balance adaptively, but also can fully assist in depleting the drift region to increase the drift doping concentration and reshape the electric field to avoid premature breakdown. Compared with the conventional structure, the VFP HK LDMOS has the breakdown voltage of 629.1 V at the drift length of 40 μm and the specific on-resistance of 38.4 mΩ·cm2 at the gate potential of 15 V. Then the power figure of merit is 10.31 MW/cm2.

Key words: high-k dielectricvertical field platehigh voltagespecific on-resistancepolarized charges



[1]
Hu S D, Zhang B, Li Z J, et al. A new structure and its analytical model for the vertical interface electric field of a partial-SOI high voltage device. Chin Phys B, 2010, 19(3): 037303 doi: 10.1088/1674-1056/19/3/037303
[2]
Hu S D, Zhang B, Li Z J. A new analytical model of high voltage silicon on insulator(SOI) thin film devices. Chin Phys B, 2009, 18(1): 315 doi: 10.1088/1674-1056/18/1/051
[3]
Li Q, Li Z J, Zhang B. Analytical model for the surface electrical field distribution of double RESURF device with surface. Acta Phys Soc, 2007, 56(11): 6660
[4]
Zhou K, Luo X, Xu Q, et al. A RESURF-enhanced p-channel trench SOI LDMOS with ultralow specific on-resistance. IEEE Trans Electron Devices, 2014, 61(7): 2466 doi: 10.1109/TED.2014.2321146
[5]
Wu L J, Zhang W T, Qiao M, et al. SOI SJ high voltage device with linear variable doping interface thin silicon layer. Electron Lett, 2012, 48(5): 297
[6]
Zhang W, Zhang B, Qiao M, et al. Optimization and new structure of superjunction with isolator layer. IEEE Trans Electron Devices, 2016, 64(1): 217
[7]
Li J, Li P, Huo W, et al. Analysis and fabrication of an LDMOS with high-permittivity dielectric. IEEE Electron Device Letters, 2011, 32(9): 1266 doi: 10.1109/LED.2011.2158383
[8]
Luo X, Jiang Y H, Zhou K, et al. Ultralow specific on-resistance superjunction vertical DMOS with high-k, dielectric pillar. IEEE Electron Device Lett, 2012, 33(7): 1042 doi: 10.1109/LED.2012.2196969
[9]
Chen X B, Huang M M. A Vertical power MOSFET with an interdigitated drift region using high-k insulator. IEEE Trans Electron Devices, 2012, 59(9): 2430 doi: 10.1109/TED.2012.2204890
[10]
Chen X. Super-junction voltage sustaining layer with alternating semiconductor and high-k dielectric regions: US Patent, US7230310. 2007
[11]
Guo Y, Yao J, Zhang B, et al. Variation of lateral width technique in SoI high-voltage lateral `double-diffused` metal–oxide–semiconductor transistors using high-k dielectric. IEEE Electron Device Lett, 2015, 36(3): 262 doi: 10.1109/LED.2015.2393913
[12]
Li H, Chen X B. Deep trench junction termination employing variable-k dielectric for high voltage devices. IEEE 11th International Conference on ASIC (ASICON), Chengdu, China, 2015
[13]
Luo X, Lv M, Yin C, et al. Ultralow on-resistance SOI LDMOS with three separated gates and high-k, dielectric. IEEE Trans Electron Devices, 2016, 63(9): 3804 doi: 10.1109/TED.2016.2589322
[14]
Wu L, Zhang W, Shi Q, et al. Trench SOI LDMOS with vertical field plate. Electron Lett, 2014, 50(25): 1982 doi: 10.1049/el.2014.3443
[15]
Xia C, Cheng X, Wang Z, et al. Improvement of SOI trench LDMOS performance with double vertical metal field plate. IEEE Trans Electron Devices, 2014, 61(10): 3477 doi: 10.1109/TED.2014.2349553
Fig. 1.  (Color online) Schematic cross-section view of VFP HK LDMOS.

Fig. 2.  (Color online) Off-state electric field distribution of Con. LDMOS and VFP HK LDMOS. (a) Lateral electric field. (b) Vertical electric field.

Fig. 3.  (Color online) (a) Four kinds of structure transfer characteristics. (b) Optimal comparison of drift region concentration, specific on-resistance and power value.

Fig. 4.  (Color online) (a) Electron concentration distribution at the interface of high-k trench. (b) Electron concentration distribution on the left of high-k trench.

Fig. 5.  (Color online) Effect of parameters on the BV and Ron,sp of Con. LDMOS and VFP HK LDMOS (a) Nd and (b) k value of VFP HK LDMOS.

Fig. 6.  (Color online) (a) Influence of tp on VFP HK LDMOS BV and Ron,sp. (b) Influence of Lp on VFP HK LDMOS BV and Ron,sp.

Fig. 7.  (Color online) Comparison of Ron,sp among different LDMOS devices.

Fig. 8.  Key process steps to fabricate a prototype of VFP HK LDMOS.

Table 2.   BV, Ron,sp, FOM = BV2/Ron,sp for the devices.

Device structure Nd (1015 cm−3) BV (V) Ron,sp (mΩ·cm2) @ Vgs = 15 V BV2/Ron,sp (MW/cm2)
VFP HK LDMOS (k = 800) 7.5 629.1 38.4 10.31
HKLR LDMOS (k = 800)[14] 3.5 649 82.8 5.09
DT HK LDMOS (lp = 2k = 800) 2 162.4 86.4 0.31
Con. LDMOS 1.1 388.9 147.5 1.02
DownLoad: CSV

Table 1.   Structure parameters used in the simulation.

Symbol Description Value
tp Length of gate field plate (μm) 2
tk Depth of high-k trench (μm) 3
k k value of high-k dielectric 800
Ld Length of N (μm) Optimized
Nn+ Concentration of N (cm−3) Optimized
tn Thickness of N (μm) 0.5
ts Distance from the bottom of the high-k trench to the top of the substrate (μm) 2
Lp Distance from vertical field plate to the left side of the high-k trench (μm) 2
Nd Concentration of drift region (cm−3) 7.4 × 1016
tsub Thickness of substrate (μm) 80
Nsub Concentration of substrate (cm−3) 1 × 1014
DownLoad: CSV
[1]
Hu S D, Zhang B, Li Z J, et al. A new structure and its analytical model for the vertical interface electric field of a partial-SOI high voltage device. Chin Phys B, 2010, 19(3): 037303 doi: 10.1088/1674-1056/19/3/037303
[2]
Hu S D, Zhang B, Li Z J. A new analytical model of high voltage silicon on insulator(SOI) thin film devices. Chin Phys B, 2009, 18(1): 315 doi: 10.1088/1674-1056/18/1/051
[3]
Li Q, Li Z J, Zhang B. Analytical model for the surface electrical field distribution of double RESURF device with surface. Acta Phys Soc, 2007, 56(11): 6660
[4]
Zhou K, Luo X, Xu Q, et al. A RESURF-enhanced p-channel trench SOI LDMOS with ultralow specific on-resistance. IEEE Trans Electron Devices, 2014, 61(7): 2466 doi: 10.1109/TED.2014.2321146
[5]
Wu L J, Zhang W T, Qiao M, et al. SOI SJ high voltage device with linear variable doping interface thin silicon layer. Electron Lett, 2012, 48(5): 297
[6]
Zhang W, Zhang B, Qiao M, et al. Optimization and new structure of superjunction with isolator layer. IEEE Trans Electron Devices, 2016, 64(1): 217
[7]
Li J, Li P, Huo W, et al. Analysis and fabrication of an LDMOS with high-permittivity dielectric. IEEE Electron Device Letters, 2011, 32(9): 1266 doi: 10.1109/LED.2011.2158383
[8]
Luo X, Jiang Y H, Zhou K, et al. Ultralow specific on-resistance superjunction vertical DMOS with high-k, dielectric pillar. IEEE Electron Device Lett, 2012, 33(7): 1042 doi: 10.1109/LED.2012.2196969
[9]
Chen X B, Huang M M. A Vertical power MOSFET with an interdigitated drift region using high-k insulator. IEEE Trans Electron Devices, 2012, 59(9): 2430 doi: 10.1109/TED.2012.2204890
[10]
Chen X. Super-junction voltage sustaining layer with alternating semiconductor and high-k dielectric regions: US Patent, US7230310. 2007
[11]
Guo Y, Yao J, Zhang B, et al. Variation of lateral width technique in SoI high-voltage lateral `double-diffused` metal–oxide–semiconductor transistors using high-k dielectric. IEEE Electron Device Lett, 2015, 36(3): 262 doi: 10.1109/LED.2015.2393913
[12]
Li H, Chen X B. Deep trench junction termination employing variable-k dielectric for high voltage devices. IEEE 11th International Conference on ASIC (ASICON), Chengdu, China, 2015
[13]
Luo X, Lv M, Yin C, et al. Ultralow on-resistance SOI LDMOS with three separated gates and high-k, dielectric. IEEE Trans Electron Devices, 2016, 63(9): 3804 doi: 10.1109/TED.2016.2589322
[14]
Wu L, Zhang W, Shi Q, et al. Trench SOI LDMOS with vertical field plate. Electron Lett, 2014, 50(25): 1982 doi: 10.1049/el.2014.3443
[15]
Xia C, Cheng X, Wang Z, et al. Improvement of SOI trench LDMOS performance with double vertical metal field plate. IEEE Trans Electron Devices, 2014, 61(10): 3477 doi: 10.1109/TED.2014.2349553
1

4H-SiC superjunction MOSFET with integrated high-K gate dielectric and split gate

Jiafei Yao, Zhengfei Yang, Yuxuan Dai, Ziwei Hu, Man Li, et al.

Journal of Semiconductors. doi: 10.1088/1674-4926/25010005

2

Voltage-dependent plasticity and image Boolean operations realized in a WOx-based memristive synapse

Jiajuan Shi, Ya Lin, Tao Zeng, Zhongqiang Wang, Xiaoning Zhao, et al.

Journal of Semiconductors, 2021, 42(1): 014102. doi: 10.1088/1674-4926/42/1/014102

3

Direct tunneling gate current model for symmetric double gate junctionless transistor with SiO2/high-k gate stacked dielectric

S. Intekhab Amin, R. K. Sarin

Journal of Semiconductors, 2016, 37(3): 034001. doi: 10.1088/1674-4926/37/3/034001

4

Performance analysis of charge plasma based dual electrode tunnel FET

Sunny Anand, S. Intekhab Amin, R. K. Sarin

Journal of Semiconductors, 2016, 37(5): 054003. doi: 10.1088/1674-4926/37/5/054003

5

Physical origin investigation of the flatband voltage roll off for metal-oxide-semiconductor device with high-k/metal gate structure

Kai Han, Xiaolei Wang, Wenwu Wang

Journal of Semiconductors, 2015, 36(9): 094006. doi: 10.1088/1674-4926/36/9/094006

6

Electric dipole formation at high-k dielectric/SiO2 interface

Kai Han, Xiaolei Wang, Hong Yang, Wenwu Wang

Journal of Semiconductors, 2015, 36(3): 036004. doi: 10.1088/1674-4926/36/3/036004

7

Ultralow specific on-resistance high voltage trench SOI LDMOS with enhanced RESURF effect

Qing Xu, Xiaorong Luo, Kun Zhou, Ruichao Tian, Jie Wei, et al.

Journal of Semiconductors, 2015, 36(2): 024010. doi: 10.1088/1674-4926/36/2/024010

8

Influences of ICP etching damages on the electronic properties of metal field plate 4H-SiC Schottky diodes

Hui Wang, Yingxi Niu, Fei Yang, Yong Cai, Zehong Zhang, et al.

Journal of Semiconductors, 2015, 36(10): 104006. doi: 10.1088/1674-4926/36/10/104006

9

Dynamic threshold voltage operation in Si and SiGe source junctionless tunnel field effect transistor

Shibir Basak, Pranav Kumar Asthana, Yogesh Goswami, Bahniman Ghosh

Journal of Semiconductors, 2014, 35(11): 114001. doi: 10.1088/1674-4926/35/11/114001

10

A 800 V dual conduction paths segmented anode LIGBT with low specific on-resistance and small shift voltage

Kun Mao, Ming Qiao, Bo Zhang, Zhaoji Li

Journal of Semiconductors, 2014, 35(5): 054004. doi: 10.1088/1674-4926/35/5/054004

11

Performance analysis of silicon nanowire transistors considering effective oxide thickness of high-k gate dielectric

S. Theodore Chandra, N. B. Balamurugan

Journal of Semiconductors, 2014, 35(4): 044001. doi: 10.1088/1674-4926/35/4/044001

12

Capacitance-voltage analysis of a high-k dielectric on silicon

Davinder Rathee, Sandeep K. Arya, Mukesh Kumar

Journal of Semiconductors, 2012, 33(2): 022001. doi: 10.1088/1674-4926/33/2/022001

13

Design of 700 V triple RESURF nLDMOS with low on-resistance

Yin Shan, Qiao Ming, Zhang Yongman, Zhang Bo

Journal of Semiconductors, 2011, 32(11): 114002. doi: 10.1088/1674-4926/32/11/114002

14

A novel complementary N+-charge island SOI high voltage device

Wu Lijuan, Hu Shengdong, Zhang Bo, Li Zhaoji

Journal of Semiconductors, 2010, 31(11): 114010. doi: 10.1088/1674-4926/31/11/114010

15

A novel on-chip high to low voltage power conversion circuit

Wang Hui, Wang Songlin, Lai Xinquan, Ye Qiang, Mou Zaixin, et al.

Journal of Semiconductors, 2009, 30(3): 035008. doi: 10.1088/1674-4926/30/3/035008

16

A high precision programmable bandgap voltage reference design for high resolution ADC

Zhu Tiancheng, Yao Suying, Li Binqiao

Journal of Semiconductors, 2009, 30(7): 075005. doi: 10.1088/1674-4926/30/7/075005

17

Axial Local Lifetime Control in High-Voltage Diodes Based on Proximity Gettering of Platinum by Proton-Implantation Damages

Jia Yunpeng, Zhang Bin, Sun Yuechen, Kang Baowei

Chinese Journal of Semiconductors , 2006, 27(2): 294-297.

18

2D Threshold-Voltage Model for High-k Gate-Dielectric MOSFETs

Ji Feng, Xu Jingping, Lai P T, Chen Weibing, Li Yanping, et al.

Chinese Journal of Semiconductors , 2006, 27(10): 1725-1731.

19

Fabrication of Ultrathin SiO2 Gate Dielectric by Direct Nitrogen Implantation into Silicon Substrate

Xu Xiaoyan, Cheng Xingzhi, Huang Ru,and Zhang Xing

Chinese Journal of Semiconductors , 2005, 26(2): 266-270.

20

On-State Breakdown Model for High Voltage RESURF LDMOS

Fang Jian, Yi Kun, Li Zhaoji, and Zhang Bo(436)

Chinese Journal of Semiconductors , 2005, 26(3): 436-442.

1. Lyu, H., Dai, H., Wang, L. et al. Study of ultra-low specific on-resistance and high breakdown voltage SOI LDMOS based on electron accumulation effect. Engineering Research Express, 2023, 5(3): 035048. doi:10.1088/2631-8695/acf18c
2. Zhu, Q.. High-k Dielectric Assisted Trench Termination of the 4H-SiC Super Junction Device for Improved Avalanche Capability. 2023. doi:10.1109/COMPEL52896.2023.10221057
  • Search

    Advanced Search >>

    GET CITATION

    Lijuan Wu, Limin Hu, Lin Zhu, Hang Yang, Bing Lei, Haiqing Xie. Ultralow specific ON-resistance high-k LDMOS with vertical field plate[J]. Journal of Semiconductors, 2018, 39(10): 104006. doi: 10.1088/1674-4926/39/10/104006
    L J Wu, L M Hu, L Zhu, H Yang, B Lei, H Q Xie. Ultralow specific ON-resistance high-k LDMOS with vertical field plate[J]. J. Semicond., 2018, 39(10): 104006. doi: 10.1088/1674-4926/39/10/104006.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4196 Times PDF downloads: 51 Times Cited by: 2 Times

    History

    Received: 08 February 2018 Revised: 14 March 2018 Online: Uncorrected proof: 25 May 2018Published: 09 October 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Lijuan Wu, Limin Hu, Lin Zhu, Hang Yang, Bing Lei, Haiqing Xie. Ultralow specific ON-resistance high-k LDMOS with vertical field plate[J]. Journal of Semiconductors, 2018, 39(10): 104006. doi: 10.1088/1674-4926/39/10/104006 ****L J Wu, L M Hu, L Zhu, H Yang, B Lei, H Q Xie. Ultralow specific ON-resistance high-k LDMOS with vertical field plate[J]. J. Semicond., 2018, 39(10): 104006. doi: 10.1088/1674-4926/39/10/104006.
      Citation:
      Lijuan Wu, Limin Hu, Lin Zhu, Hang Yang, Bing Lei, Haiqing Xie. Ultralow specific ON-resistance high-k LDMOS with vertical field plate[J]. Journal of Semiconductors, 2018, 39(10): 104006. doi: 10.1088/1674-4926/39/10/104006 ****
      L J Wu, L M Hu, L Zhu, H Yang, B Lei, H Q Xie. Ultralow specific ON-resistance high-k LDMOS with vertical field plate[J]. J. Semicond., 2018, 39(10): 104006. doi: 10.1088/1674-4926/39/10/104006.

      Ultralow specific ON-resistance high-k LDMOS with vertical field plate

      DOI: 10.1088/1674-4926/39/10/104006
      Funds:

      Project supported by the National Natural Science Foundtion of China (No.61404011), the Research and Innovation Project of Graduate Students of Changsha University of Science & Technology (No. CX2017SS25), the Scientific Research Fund of Hunan Provincial Education Department (No. 15C0034), and the Introduction of Talents Project of Changsha University of Science Technology (No. 1198023).

      More Information
      • Corresponding author: 305719669@qq.com
      • Received Date: 2018-02-08
      • Revised Date: 2018-03-14
      • Published Date: 2018-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return