Citation: |
Kun Ren, Jiachen Zheng, Haiyan Lu, Jun Liu, Lishu Wu, Wenyong Zhou, Wei Cheng. An investigation of the DC and RF performance of InP DHBTs transferred to RF CMOS wafer substrate[J]. Journal of Semiconductors, 2018, 39(5): 054004. doi: 10.1088/1674-4926/39/5/054004
****
K Ren, J C Zheng, H Y Lu, J Liu, L S Wu, W Y Zhou, W Cheng. An investigation of the DC and RF performance of InP DHBTs transferred to RF CMOS wafer substrate[J]. J. Semicond., 2018, 39(5): 054004. doi: 10.1088/1674-4926/39/5/054004.
|
An investigation of the DC and RF performance of InP DHBTs transferred to RF CMOS wafer substrate
DOI: 10.1088/1674-4926/39/5/054004
More Information
-
Abstract
This paper investigated the DC and RF performance of the InP double heterojunction bipolar transistors (DHBTs) transferred to RF CMOS wafer substrate. The measurement results show that the maximum values of the DC current gain of a substrate transferred device had one emitter finger, of 0.8 μm in width and 5 μm in length, are changed unobviously, while the cut-off frequency and the maximum oscillation frequency are decreased from 220 to 171 GHz and from 204 to 154 GHz, respectively. In order to have a detailed insight on the degradation of the RF performance, small-signal models for the InP DHBT before and after substrate transferred are presented and comparably extracted. The extracted results show that the degradation of the RF performance of the device transferred to RF CMOS wafer substrate are mainly caused by the additional introduced substrate parasitics and the increase of the capacitive parasitics induced by the substrate transfer process itself.-
Keywords:
- CMOS technology,
- amplifier,
- integrated circuits
-
References
[1] Yamada H, Onozuka Y, Iida A, et al. A wafer-level heterogeneous technology integration for flexible pseudo-SoC. IEEE International Solid-State Circuits Conference, 2010: 146 doi: 10.1109/ISSCC.2010.5434011[2] Matsuzawa A. A new direction in integrated circuit technology. 50th Midwest Symposium on Circuits & Systems, 2007: 1550 doi: 10.1109/MWSCAS.2007.4488837[3] Ancey P. From 3D-SOC to 3D heterogeneous systems: technology and applications. Symposium on VLSI Technology, Honolulu, HI, USA, 2011: 180[4] Ostermay I. 200 GHz interconnects for InP-on-BiCMOS integration. IEEE MTT-S International Microwave Symposium, Seattle, WA, USA, 2013: 1 doi: 10.1109/MWSYM.2013.6697393[5] Royter Y, Patterson P R, Li J C, et al. Dense heterogeneous integration for InP Bi-CMOS technology. IEEE International Conference on Indium Phosphide & Related Materials, 2009: 105 doi: 10.1109/ICIPRM.2009.5012453[6] Kazior T E, LaRoche J R, Lubyshev D, et al. A high performance differential amplifier through the direct monolithic integration of InP HBTs and Si CMOS on silicon substrates. IEEE MTT-S International Microwave Symposium Digest, 2009: 1113 doi: 10.1109/MWSYM.2009.5165896[7] Hossain M, Nosaeva K, Weimann N, et al. A 330 GHz active frequency quadrupler in InP DHBT transferred-substrate technology. IEEE MTT-S International Microwave Symposium, 2016: 1 doi: 10.1109/MWSYM.2016.7540049[8] Liou J C, Yang C F, Lin Y C, et al. Monolithic of SOI wafer waveguide and InP-laser with DVS-BCB coating and bonding. Microelectron Eng, 2015, 148: 44 doi: 10.1016/j.mee.2015.07.010[9] Wang J, Yang X, Niu Y, et al. ICP-RIE dry etching of 4H-SiC materials in SF6/O2/HBr. Micronanoelectron Technol, 2015, 52: 59[10] Tiemeijer L F, Havens R J, Jansman A B M, et al. Comparison of the "pad-open-short" and "open-short-load" deembedding techniques for accurate on-wafer RF characterization of high-quality passives. IEEE Trans Microwave Theory Tech, 2005, 53(2): 723 doi: 10.1109/TMTT.2004.840621[11] Potereau M, Raya C, Matos M D, et al. Limitations of on-wafer calibration and de-embedding methods in the sub-THz range. J Comput Commun, 2013, 01(6): 25 doi: 10.4236/jcc.2013.16005[12] Johansen T K, Leblanc R, Poulain J, et al. Direct extraction of InP/GaAsSb/InP DHBT equivalent-circuit elements from S-parameters measured at cut-off and normal bias conditions. IEEE Trans Microwave Theory Tech, 2016, 64(1): 115 doi: 10.1109/TMTT.2015.2503769[13] Lee K, Choi K, Kook S H, et al. Direct parameter extraction of SiGe HBTs for the VBIC bipolar compact model. IEEE Trans Electron Devices, 2005, 52(3): 375 doi: 10.1109/TED.2005.843906[14] Zhou Z J, Ren K, Liu J, et al. Frequency stability of InP HBT over 0.2 to 220 GHz. J Semicond, 2015, 36(2): 024006 doi: 10.1088/1674-4926/36/2/024006[15] Lee S. A parameter extraction method for a small-signal MOSFET model including substrate parameters. IEEE International Conference on Semiconductor Electronics, 2002: 255 doi: 10.1109/SMELEC.2002.1217819 -
Proportional views