Citation: |
Binjie Ge, Yan Li, Hang Yu, Xiaoxing Feng. Design and implementation of quadrature bandpass sigma–delta modulator used in low-IF RF receiver[J]. Journal of Semiconductors, 2018, 39(5): 055002. doi: 10.1088/1674-4926/39/5/055002
****
B J Ge, Y Li, H Yu, X X Feng. Design and implementation of quadrature bandpass sigma–delta modulator used in low-IF RF receiver[J]. J. Semicond., 2018, 39(5): 055002. doi: 10.1088/1674-4926/39/5/055002.
|
Design and implementation of quadrature bandpass sigma–delta modulator used in low-IF RF receiver
DOI: 10.1088/1674-4926/39/5/055002
More Information
-
Abstract
This paper presents the design and implementation of quadrature bandpass sigma–delta modulator. A pole movement method for transforming real sigma–delta modulator to a quadrature one is proposed by detailed study of the relationship of noise-shaping center frequency and integrator pole position in sigma–delta modulator. The proposed modulator uses sampling capacitor sharing switched capacitor integrator, and achieves a very small feedback coefficient by a series capacitor network, and those two techniques can dramatically reduce capacitor area. Quantizer output-dependent dummy capacitor load for reference voltage buffer can compensate signal-dependent noise that is caused by load variation. This paper designs a quadrature bandpass Sigma-Delta modulator for 2.4 GHz low IF receivers that achieve 69 dB SNDR at 1 MHz BW and −1 MHz IF with 48 MHz clock. The chip is fabricated with SMIC 0.18 μm CMOS technology, it achieves a total power current of 2.1 mA, and the chip area is 0.48 mm2. -
References
[1] Razavi B. RF microelectronics. 2nd ed. Pearson Education, Inc, 2012[2] Crols J, Steyaert S J. Low-IF topologies for high-performance analog front ends of fully integrated receivers. IEEE Trans Circuits Syst II, 1998, 45(3): 269 doi: 10.1109/82.664233[3] Cui F L. Mixer and image-rejection circuit analysis and design in Bluetooth transceiver. PhD Thesis, Fudan University, 2004[4] Xu Y, Zhang Z H, Chi B Y, et al. A 5-/20-MHz BW reconfigurable quadrature bandpass CT ΔΣ ADC with antipole-splitting opamp and digital I/Q calibration. IEEE Trans Very Large Scale Integr (VLSI) Syst, 2016, 24(1): 234[5] Zhang J F, Xu Y, Zhang Z H, et al. A 10-b fourth-order quadrature bandpass continuous-time ΣΔ modulator with 33-MHz bandwidth for a dual-channel GNSS receiver. IEEE Trans Microwave Theory Tech, 2017, 65(4): 1303 doi: 10.1109/TMTT.2017.2662378[6] Li B, Pun K P. A high image-rejection sc quadrature bandpass DSM for low-IF receivers. IEEE Trans Circuits Syst I, 2014, 61(1): 92 doi: 10.1109/TCSI.2013.2268588[7] Allen M, Marttila J, Valkama M. Wideband quadrature sigma-delta A/D conversion for cognitive radio - reconfigurable design and digital mirror-frequency suppression. Vehicular Technology Conference (VTC Fall), 2013: 1090[8] Martin K W. Complex signal processing is not complex. IEEE Trans Circuits Syst I, 2004, 51(9): 1823 doi: 10.1109/TCSI.2004.834522[9] Pavan S, Schreier R, Temes G. Understanding delta-sigma data converters. 2nd ed. John Wiley & Sons, Inc, 2016[10] Neitola M. Loop filter design and optimization for quadrature delta–sigma converters. IEEE European Conference on Circuit Theory and Design, 2015: 24[11] Jantzi S A, Martin K W, Sedra A S. Quadrature bandpass modulator for digital radio. IEEE J Solid-State Circuits, 1997, 32(12): 1935 doi: 10.1109/4.643651[12] Ge B J, Wang X A, Zhang X, et al. Sigma-delta modulator modeling analysis and design. J Semicond, 2010, 31(9): 095003 doi: 10.1088/1674-4926/31/9/095003[13] Ge B J, Wang X A, Zhang X, et al. Study and analysis of coefficient mismatch in a MASH21 sigma-delta modulator. J Semicond, 2010, 31(1): 015007 doi: 10.1088/1674-4926/31/1/015007[14] Razavi B. Design of analog CMOS intergrated circuits. 2nd ed. McGraw-Hill Education, 2016[15] Philips K. A 4.4 mW 76 dB complex ADC for bluetooth receivers. IEEE ISSCC, 2003: 64[16] Atac A, Liao L, Wang Y, et al. A 1.7 mW quadrature bandpass ΔΣ ADC with 1 MHz bandwidth and 60 dB DR at 1 MHz IF. IEEE International Symposium on Circuits & Systems, 2013, 1035(10): 1039 -
Proportional views