Citation: |
Feng Liang, Jing Yang, Degang Zhao, Zongshun Liu, Jianjun Zhu, Ping Chen, Desheng Jiang, Yongsheng Shi, Hai Wang, Lihong Duan, Liqun Zhang, Hui Yang. Room-temperature continuous-wave operation of GaN-based blue-violet laser diodes with a lifetime longer than 1000 h[J]. Journal of Semiconductors, 2019, 40(2): 022801. doi: 10.1088/1674-4926/40/2/022801
****
F Liang, J Yang, D G Zhao, Z S Liu, J J Zhu, P Chen, D S Jiang, Y S Shi, H Wang, L H Duan, L Q Zhang, H Yang, Room-temperature continuous-wave operation of GaN-based blue-violet laser diodes with a lifetime longer than 1000 h[J]. J. Semicond., 2019, 40(2): 022801. doi: 10.1088/1674-4926/40/2/022801.
|
Room-temperature continuous-wave operation of GaN-based blue-violet laser diodes with a lifetime longer than 1000 h
DOI: 10.1088/1674-4926/40/2/022801
More Information
-
Abstract
GaN-based continuous-wave operated blue-violet laser diodes (LDs) with long lifetime are demonstrated, which are grown on a c-plane GaN substrate by metal organic chemical vapor deposition with a 10 × 600 μm2 ridge waveguide structure. The electrical and optical characteristics of a blue-violet LD are investigated under direct-current injection at room temperature (25 °C). The stimulated emission wavelength and peak optical power of the LD are around 413 nm and over 600 mW, respectively. In addition, the threshold current density and voltage are as small as 1.46 kA/cm2 and 4.1 V, respectively. Moreover, the lifetime is longer than 1000 hours under room-temperature continuous-wave operation. -
References
[1] Ruhnke N, Müller A, Eppich B, et al. Compact Deep UV System at 222.5 nm Based on Frequency Doubling of GaN Laser Diode Emission. IEEE Photonic Tech Lett, 2018, 30(3): 289. doi: 10.1109/LPT.2017.2787463[2] Goldberg G R, Ivanov P, Ozaki N, et al. Gallium nitride light sources for optical coherence tomography. Gallium Nitride Materials and Devices XII, 2017: 101041X doi: 10.1117/12.2252665[3] Wunderer T, Northrup J E, Yang Z, et al. Nitride VECSELs as light sources for biomedical applications. CLEO: Applications and Technology, 2013: JM3O.1 doi: 10.1364/CLEO_AT.2013.JM3O.1[4] Xue B, Liu Z, Yang J, et al. Characteristics of III-nitride based laser diode employed for short range underwater wireless optical communications. Opt Commun, 2018, 410: 525. doi: 10.1016/j.optcom.2017.10.086[5] Huang Y F, Tsai C T, Chi Y C, et al. Filtered Multicarrier OFDM Encoding on Blue Laser Diode for 14.8-Gbps Seawater Transmission. J Lightwave Technol, 2018, 36(9): 1739. doi: 10.1109/JLT.2017.2782840[6] Strauβ U, Brüninghoff S, Schillgalies M, et al. True-blue InGaN laser for pico size projectors. Gallium Nitride Materials and Devices III, 2008: 689417 doi: 10.1117/12.761720[7] Buckley E. Laser wavelength choices for pico-projector applications. J Display Technol, 2011, 7(7): 402. doi: 10.1109/JDT.2011.2125944[8] Essaian S and Khaydarov J. State of the art of compact green lasers for mobile projectors. Opt Rev, 2012, 19(6): 400. doi: 10.1007/s10043-012-0065-z[9] Gan Y, Lu Y, Xu Q Y et al. Compact integrated green laser module for Watt-level display applications. IEEE Photonic Tech Lett, 2013, 25(1): 75. doi: 10.1109/LPT.2012.2226938[10] Nakamura S, Senoh M, Nagahama S I, et al. Violet InGaN/GaN/AlGaN-based laser diodes with an output power of 420 mW. Jpn J Appl Phys, 1998, 37(6A): L627. doi: 10.1143/JJAP.37.L627[11] Nakamura S, Senoh M, Nagahama S I, et al. InGaN-based multi-quantum-well-structure laser diodes. Jpn J Appl Phys, 1996, 35(1B): L74. doi: 10.1063/1.116570[12] Hardy M T, Feezell D F, DenBaars S P, et al. Group III-nitride lasers: a materials perspective. Mater Today, 2011, 14(9): 408. doi: 10.1016/S1369-7021(11)70185-7[13] Moustakas T D, Paiella R. Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz. Rep Prog Phys, 2017, 80(10): 106501. doi: 10.1088/1361-6633/aa7bb2[14] Kim J, Kim H, Lee S N. Thermal degradation in InGaN quantum wells in violet and blue GaN-based laser diodes. Curr Appl Phys, 2011, 11(4): S167. doi: 10.1016/j.cap.2011.07.024[15] Masui S, Nakatsu Y, Kasahara D, et al. Recent improvement in nitride lasers. Gallium Nitride Materials and Devices XII, 2017: 101041H doi: 10.1117/12.2247988[16] Najda S P, Perlin P, Suski T, et al. AlGaInN laser-diode technology for optical clocks and atom interferometry. Gallium Nitride Materials and Devices XII, 2017: 101041L doi: 10.1117/12.2250322[17] Najda S P, Stanczyk S, Kafar A, et al. Tapered waveguide high power AlGaInN laser diodes and amplifiers for optical integration and quantum technologies. Quantum Technologies & Quantum Information Science, 2017: 104420O doi: 10.1117/12.2279565[18] Najda S P, Perlin P, Suski T, et al. GaN laser diodes for high-power optical integration and quantum technologies. Gallium Nitride Materials and Devices XIII, 2018: 1053217 doi: 10.1117/12.2277001[19] Chen P, Zhao D G, Feng M X, et al. A high power InGaN-based blue-violet laser diode array with a broad-area stripe. Chin Phys Lett, 2013, 30(10): 104205. doi: 10.1088/0256-307X/30/10/104205[20] Zhao D G, Jiang D S, Le L C, et al. Performance improvement of GaN-based violet laser diodes. Chin Phys Lett, 2017, 34(1): 017101. doi: 10.1088/0256-307X/34/1/017101[21] Liang F, Zhao D G, Jiang D S, et al. Improvement of Ohmic contact to p-GaN by controlling the residual carbon concentration in p++-GaN layer. J Cryst Growth, 2017, 467: 1. doi: 10.1016/j.jcrysgro.2017.03.009[22] Liang F, Zhao D G, Jiang D S, et al. Influence of residual carbon impurities in a heavily Mg-doped GaN contact layer on an Ohmic contact. Appl Opt, 2017, 56(14): 4197. doi: 10.1364/AO.56.004197[23] Yang J, Zhao D G, Jiang D S, et al. Investigation on the compensation effect of residual carbon impurities in low temperature grown Mg doped GaN films. J Appl Phys, 2014, 115(16): 163704. doi: 10.1063/1.4873957[24] Yang J, Zhao D G, Jiang D S, et al. Influence of hydrogen impurities on p-type resistivity in Mg-doped GaN films. J Vac Sci Technol A, 2015, 33(2): 021505. doi: 10.1116/1.4904035[25] Liang F, Yang J, Zhao D G, et al. Influence of hydrogen impurity on the resistivity of low temperature grown p-AlxGa1−xN layer (0.08 ≤ x ≤ 0.104). Superlattice Microstruct, 2018, 113: 720. doi: 10.1016/j.spmi.2017.12.002[26] Yang J, Zhao D G, Jiang D S, et al. Emission efficiency enhanced by reducing the concentration of residual carbon impurities in InGaN/GaN multiple quantum well light emitting diodes. Opt Express, 2016, 24(13): 13824. doi: 10.1364/OE.24.013824[27] Liang F, Zhao D G, Jiang D S, et al. Performance enhancement of the GaN-based laser diode by using an unintentionally doped GaN upper waveguide. Jpn J Appl Phys, 2018, 57: 070307. doi: 10.7567/JJAP.57.070307 -
Proportional views