Citation: |
Santosh Kumar Gupta, Rupesh Shukla. Bandgap engineered novel g-C3N4/G/h-BN heterostructure for electronic applications[J]. Journal of Semiconductors, 2019, 40(3): 032801. doi: 10.1088/1674-4926/40/3/032801
****
S K Gupta, R Shukla, Bandgap engineered novel g-C3N4/G/h-BN heterostructure for electronic applications[J]. J. Semicond., 2019, 40(3): 032801. doi: 10.1088/1674-4926/40/3/032801.
|
Bandgap engineered novel g-C3N4/G/h-BN heterostructure for electronic applications
DOI: 10.1088/1674-4926/40/3/032801
More Information
-
Abstract
The effect of an external electric field on the bandgap is observed for two proposed heterostructures graphitic carbon nitride-graphene-hexagonal boron nitride (g-C3N4/G/h-BN) in hexagonal stack (AAA) and graphene-graphitic carbon nitride-hexagonal boron nitride (G/g-C3N4/h-BN) in Bernal stack (ABA). Their inter-layer distance, binding energy and effective mass has also been calculated. The structure optimization has been done by density functional theory (DFT) with van der Waals corrections. The inter-layer distance, bandgap, binding energy and effective mass has been listed for these heterostructures and compared with that of bilayer graphene (BLG), graphene-hexagonal boron nitride (G/h-BN) hetero-bilayer, graphene-graphitic carbon nitride (G/g-C3N4) hetero-bilayer and graphitic carbon nitride-graphene- graphitic carbon nitride (g-C3N4/G/g-C3N4) heterostructure in Bernal and hexagonal stack. g-C3N4/G/h-BN is found to offer lower effective mass and larger bandgap opening among the considered heterostructures. -
References
[1] Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6: 183 doi: 10.1038/nmat1849[2] Gupta M, Gaur N, Kumar P, et al. Tailoring the electronic properties of a Z-shaped graphene field effect transistor via B/N doping. Phys Lett A, 2015, 379: 710 doi: 10.1016/j.physleta.2014.12.046[3] Novoselov K S, Geim A K, Morozov S. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666 doi: 10.1126/science.1102896[4] Wang X R, Ouyang Y J, Li X L, et al. Room-temperature all semiconducting sub-10-nm Graphene nanoribbon field-effect transistors. Phys Rev Lett, 2008, 100: 206803 doi: 10.1103/PhysRevLett.100.206803[5] Giovannetti G, Khomyakov P A, Brocks G, et al. Substrate induced band gap in Graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys Rev B, 2007, 76: 073103 doi: 10.1103/PhysRevB.76.073103[6] Ao Z M, Peeters F M. electric field activated hydrogen dissociative adsorption to nitrogen-doped graphene. J Phys Chem C, 2010, 114(34): 14503 doi: 10.1021/jp103835k[7] Zhou J, Wu M M, Zhou X, et al. Tuning electronic and magnetic properties of Graphene by surface modification. Appl Phys Lett, 2009, 95: 103108 doi: 10.1063/1.3225154[8] Choi S M, Jhi S H, Son Y W. Effects of strain on electronic properties of Graphene. Phys Rev B, 2010, 81: 081407 doi: 10.1103/PhysRevB.81.081407[9] Zhang Y, Tang T T, Girit C, et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 2009, 459: 820 doi: 10.1038/nature08105[10] Tao W, Qing G, Yan L, et al. A comparative investigation of an AB- and AA-stacked bilayer Graphene sheet under an applied electric field: A density functional theory study. Chin Phys B, 2012, 21(6): 067301 doi: 10.1088/1674-1056/21/6/067301[11] Avetisyan A A, Partoens B, Peeters F M. Stacking order dependent electric field tuning of the band gap in Graphene multilayers. Phys Rev B, 2010, 81: 115432 doi: 10.1103/PhysRevB.81.115432[12] Zhu J, Xiao P, Li H, et al. Graphitic Carbon Nitride: Synthesis, Properties, and Applications in Catalysis. ACS Appl Mater Interf, 2014, 6: 16449 doi: 10.1021/am502925j[13] Li X R, Dai Y, Ma Y D, et al. Graphene/g-C3N4 bilayer: considerable band gap opening and effective band structure engineering. Phys Chem Chem Phys, 2014, 16: 4230 doi: 10.1039/c3cp54592j[14] Dong M M, He C, Zhang W X, et al. Tunable and sizable bandgap of g-C3N4/Graphene/g-C3N4 sandwich heterostructure: a Van Der Waals density functional study. J Mater Chem C, 2017, 5: 3830 doi: 10.1039/C7TC00386B[15] Hu Wei, Li Zhenyu, Yang Jinlong. Structural, electronic, and optical properties of hybrid silicene and graphene nanocomposite. J Chem Phys, 2013, 139: 154704 doi: 10.1063/1.4824887[16] Atomistix Toolkit version 2017.1, Synopsys Quantum Wise A/S (www.quantumwise.com)[17] Smidstrup S, et al. First-principles Green's-function method for surface calculations: A pseudopotential localized basis set approach. Phys Rev B, 2017, 96: 195309 doi: 10.1103/PhysRevB.96.195309[18] Schlipf M, Gygi F. Optimization algorithm for the generation of ONCV pseudopotentials. Comp Phys Commun, 2015, 196: 36 doi: 10.1016/j.cpc.2015.05.011[19] Setten M J van, et al. The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table. Comp Phys Comm, 2018, 226: 39-54 doi: 10.1016/j.cpc.2018.01.012[20] Stokbro K, et al. Semiempirical model for nanoscale device simulations, Phys Rev B, 2010, 82: 075420 doi: 10.1103/PhysRevB.82.075420[21] Pulay P. Convergence acceleration of iterative sequences, The case of SCF iteration. Chem Phys Lett, 1980, 73(2): 393 doi: 10.1016/0009-2614(80)80396-4[22] Wang J, Ma F, Sun M. Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv, 2017, 7, 16801 doi: 10.1039/C7RA00260B[23] Ghosh R K, Mahapatra S. Proposal for Graphene-Boron Nitride Heterobilayer Based Tunnel FET. IEEE Trans Nanotechnol, 2013, 12(5): 665 doi: 10.1109/TNANO.2013.2272739[24] Ramasubramaniam A, Naveh D, Towe E. Tunable band gaps in bilayer Graphene/h-BN heterostructures. Nano Lett, 2011, 11: 1070 doi: 10.1021/nl1039499 -
Proportional views