Citation: |
Ruiyuan Cao, Yu He, Qingming Zhu, Jingchi Li, Shaohua An, Yong Zhang, Yikai Su. Multi-channel 28-GHz millimeter-wave signal generation on a silicon photonic chip with automated polarization control[J]. Journal of Semiconductors, 2019, 40(5): 052301. doi: 10.1088/1674-4926/40/5/052301
****
R Y Cao, Y He, Q M Zhu, J C Li, S H An, Y Zhang, Y K Su, Multi-channel 28-GHz millimeter-wave signal generation on a silicon photonic chip with automated polarization control[J]. J. Semicond., 2019, 40(5): 052301. doi: 10.1088/1674-4926/40/5/052301.
|
Multi-channel 28-GHz millimeter-wave signal generation on a silicon photonic chip with automated polarization control
DOI: 10.1088/1674-4926/40/5/052301
More Information
-
Abstract
We propose and experimentally demonstrate an integrated silicon photonic scheme to generate multi-channel millimeter-wave (MMW) signals for 5G multi-user applications. The fabricated silicon photonic chip has a footprint of 1.1 × 2.1 mm2 and integrates 7 independent channels each having on-chip polarization control and heterodyne mixing functions. 7 channels of 4-Gb/s QPSK baseband signals are delivered via a 2-km multi-core fiber (MCF) and coupled into the chip with a local oscillator (LO) light. The polarization state of each signal light is automatically adjusted and aligned with that of the LO light, and then 7 channels of 28-GHz MMW carrying 4-Gb/s QPSK signals are generated by optical heterodyne beating. Automated polarization-control function of each channel is also demonstrated with ~7-ms tuning time and ~27-dB extinction ratio. -
References
[1] Agiwal M, Roy A, Saxena N. Next generation 5G wireless networks: A comprehensive survey. IEEE Commun Surv Tut, 2016, 18(3), 1617 doi: 10.1109/COMST.2016.2532458[2] Han S F, I C L, Xu Z K, et al. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun Mag, 2015, 53(1), 186 doi: 10.1109/MCOM.2015.7010533[3] Pi Z, Khan F. An introduction to millimeter-wave mobile broadband systems. IEEE Commun Mag, 2011, 49(6), 101 doi: 10.1109/MCOM.2011.5783993[4] Sulyman A I, Nassar A T, Samimi M K, et al. Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. IEEE Commun Mag, 2014, 52(9), 78 doi: 10.1109/MCOM.2014.6894456[5] Roh W, Ji-Yun Seol J Y, Park J, et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Commun Mag, 2014, 52(2), 106 doi: 10.1109/MCOM.2014.6736750[6] Rappaport T S. Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 2013, 1(1), 335 doi: 10.1109/ACCESS.2013.2260813[7] Heath R W. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10(3), 436 doi: 10.1109/JSTSP.2016.2523924[8] Gao X, Dai L, Sayeed A M. Low RF-complexity technologies to enable millimeter-wave MIMO with large antenna array for 5G wireless communications. IEEE Commun Mag, 2018, 56(4), 211 doi: 10.1109/MCOM.2018.1600727[9] Rebeiz G. Millimeter-wave large-scale phased-arrays for 5G systems. Microwave Symposium (IMS), IEEE MTT-S International, 2015, 1[10] Gao X. Energy-efficient hybrid analog and digital precoding for mm-Wave MIMO systems with large antenna arrays. IEEE J Sel Areas Commun, 2016, 34(4), 998 doi: 10.1109/JSAC.2016.2549418[11] Li M. Harnessing optical forces in integrated photonic circuits. Nature, 2008, 456(7221), 480 doi: 10.1038/nature07545[12] Marpaung D. Integrated microwave photonics. Laser Photonics Rev, 2013, 7(4), 506 doi: 10.1002/lpor.201200032[13] Zhang W, Yao J. Silicon-based integrated microwave photonics. IEEE J Quantum Electron, 2016, 52(1), 1 doi: 10.1109/JQE.2015.2501639[14] Guzmán R, Carpintero G, Gordon C, et al. Millimeter-wave signal generation for a wireless transmission system based on on-chip photonic integrated circuit structures. Opt Lett, 2016, 41(20), 4843 doi: 10.1364/OL.41.004843[15] Amato F, Serafino G, Ghelfi P. Ultra-fast beam steering of a phased-array antenna based on packaged photonic integrated circuits. IEEE European Conference on Optical Communication (ECOC), 2018, Tu3H[16] Carpintero G. Microwave photonic integrated circuits for millimeter-wave wireless communications. IEEE/OSA J Lightw Technol, 2014, 32(20), 3495 doi: 10.1109/JLT.2014.2321573[17] Carpintero G. 95 GHz millimeter wave signal generation using an arrayed waveguide grating dual wavelength semiconductor laser. Opt Lett, 2012, 37(17), 3657 doi: 10.1364/OL.37.003657[18] Yao J. Photonic integrated circuits for microwave signal generation and processing. Conference on Lasers and Electro-Optics (CLEO), 2018, JTh4D.1[19] Khan M H. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat Photon, 2010, 4(2), 117 doi: 10.1038/nphoton.2009.266[20] Yao J. Microwave photonics. IEEE/OSA J Lightw Technol, 2009, 27(3), 314 doi: 10.1109/JLT.2008.2009551[21] Cao R Y, He Y, Yao J P. Integrated multi-channel millimeter wave photonic generation based on a silicon chip with automated polarization control. IEEE European Conference on Optical Communication (ECOC), 2018, We2.43[22] Ma M L, Murray K, Ye M Y, et al. Silicon photonic polarization receiver with automated stabilization for arbitrary input polarizations. Conference on Lasers and Electro-Optics (CLEO), 2016, STu4G.8[23] Zhu M, Zhang L, Wang J, et al. Radio-over-fiber access architecture for integrated broadband wireless services. IEEE/OSA J Lightw Technol, 2013, 31(23), 3614 doi: 10.1109/JLT.2013.2286564[24] Macho A. Next-generation optical fronthaul systems using multicore fiber media. IEEE/OSA J Lightw Technol, 2016, 34(20), 4819 doi: 10.1109/JLT.2016.2573038[25] Kanno A, Dat P T, Kuri T, et al. Evaluation of frequency fluctuation in fiber-wireless link with direct IQ down-converter. IEEE European Conference on Optical Communication (ECOC), 2017, We.3.6.3[26] Tan K. Ultra-broadband fabrication-tolerant polarization splitter and rotator. Optical Fiber Communication Conference, 2017, Th1G.7[27] Yariv A. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photon Technol Lett, 2002, 14(4), 483 doi: 10.1109/68.992585[28] Luo L. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun, 2014, 5, 3069 doi: 10.1038/ncomms4069[29] Zhu Q, et al. Wide-range automated wavelength calibration over a full FSR in a dual-ring based silicon photonic switch. Optical Fiber Communication Conference (OFC), 2018, Th3C.1[30] Bergano N S, Kerfoot F W, Davidsion C R. Margin measurements in optical amplifier system. IEEE Photon Technol Lett, 1993, 5(3), 304 doi: 10.1109/68.205619 -
Proportional views