Citation: |
Bingjun Tang, Li Geng. A survey of active quasi-circulators[J]. Journal of Semiconductors, 2020, 41(11): 111406. doi: 10.1088/1674-4926/41/11/111406
****
B J Tang, L Geng, A survey of active quasi-circulators[J]. J. Semicond., 2020, 41(11): 111406. doi: 10.1088/1674-4926/41/11/111406.
|
-
Abstract
With the development of multi-band wireless communication and the increasing data transmission rate, the circulator as an antenna interface must be able to work in multiple frequency bands and provides large bandwidth. It presents a high challenge to the design of circulators, especially the active quasi-circulators. In this survey, we review the representative active quasi-circulators and summarize three different techniques and the corresponding structures to show an incremental improvement of the isolation and bandwidth of the active quasi-circulators. In addition, we also compare the performance of several state-of-art active circulators, and analyze their advantages and disadvantages. Finally, we conclude the future trend of the active quasi-circulators.-
Keywords:
- active quasi-circulator,
- multiband,
- bandwidth,
- isolation,
- linearity,
- insertion loss
-
References
[1] Fathy A, Denlinger E, Kalokitis D, et al. Miniature circulators for microwave superconducting systems. Proceedings of 1995 IEEE MTT-S International Microwave Symposium, 1995, 195[2] Yung E K N, Chen R S, Wu K, et al. Analysis and development of millimeter-wave waveguide-junction circulator with a ferrite sphere. IEEE Trans Microw Theory Tech, 1998, 46, 1721 doi: 10.1109/22.734570[3] Borjak A M, Davis L E. More compact ferrite circulator junctions with predicted performance. IEEE Trans Microw Theory Tech, 1992, 40, 2352 doi: 10.1109/22.179901[4] Mung S W Y, Chan W S. The challenge of active circulators: Design and optimization in future wireless communication. IEEE Microw Mag, 2019, 20, 55 doi: 10.1109/MMM.2019.2909518[5] Hara S, Tokumitsu T, Aikawa M. Novel unilateral circuits for MMIC circulators. IEEE Trans Microw Theory Tech, 1990, 38, 1399 doi: 10.1109/22.58677[6] Shin S C, Huang J Y, Lin K Y, et al. A 1.5–9.6 GHz monolithic active quasi-circulator in 0.18 μm CMOS technology. IEEE Microw Wirel Compon Lett, 2008, 18, 797 doi: 10.1109/LMWC.2008.2007703[7] Wu H S, Wang C W, Tzuang C K C. CMOS active quasi-circulator with dual transmission gains incorporating feedforward technique at K-band. IEEE Trans Microw Theory Tech, 2010, 58, 2084 doi: 10.1109/TMTT.2010.2052405[8] Chang C H, Lo Y T, Kiang J F. A 30 GHz active quasi-circulator with current-reuse technique in 0.18 μm CMOS technology. IEEE Microw Wirel Compon Lett, 2010, 20, 693 doi: 10.1109/LMWC.2010.2079321[9] Mung S W Y, Chan W S. Novel active quasi-circulator with phase compensation technique. IEEE Microw Wirel Compon Lett, 2008, 18, 800 doi: 10.1109/LMWC.2008.2007704[10] Gasmi A, Huyart B, Bergeault E, et al. Noise and power optimization of a MMIC quasi-circulator. IEEE Trans Microw Theory Tech, 1997, 45, 1572 doi: 10.1109/22.622924[11] Zheng Y, Saavedra C E. Active quasi-circulator MMIC using OTAs. IEEE Microw Wirel Compon Lett, 2009, 19, 218 doi: 10.1109/LMWC.2009.2015500[12] Kalialakis C, Cryan M J, Hall P S, et al. Analysis and design of integrated active circulator antennas. IEEE Trans Microw Theory Tech, 2000, 48, 1017 doi: 10.1109/22.904739[13] Palomba M, Bentini A, Palombini D, et al. A novel hybrid active quasi-circulator for L-band applications. 2012 19th International Conference on Microwaves, Radar & Wireless Communications, 2012, 41[14] Huang D J, Kuo J L, Wang H E. A 24-GHz low power and high isolation active quasi-circulator. 2012 IEEE/MTT-S International Microwave Symposium Digest, 2012, 1[15] Hung S H, Lee Y C, Su C C, et al. High-isolation millimeter-wave subharmonic monolithic mixer with modified quasi-circulator. IEEE Trans Microw Theory Tech, 2013, 61, 1140 doi: 10.1109/TMTT.2013.2244229[16] Wang S, Lee C H, Wu Y B. Fully integrated 10-GHz active circulator and quasi-circulator using bridged-T networks in standard CMOS. IEEE Trans VLSI Syst, 2016, 24, 3184 doi: 10.1109/TVLSI.2016.2535377[17] Ghosh D, Kumar G. A broadband active quasi circulator for UHF and L band applications. IEEE Microw Wirel Compon Lett, 2016, 26, 601 doi: 10.1109/LMWC.2016.2587830[18] Mung S W Y, Chan W S. Self-equalization technique for distributed quasi-circulator. Microw Opt Technol Lett, 2009, 51, 182 doi: 10.1002/mop.23949[19] Hung S H, Cheng K W, Wang Y H. An ultra wideband quasi-circulator with distributed amplifiers using 90 nm CMOS technology. IEEE Microw Wirel Compon Lett, 2013, 23, 656 doi: 10.1109/LMWC.2013.2283864[20] Hsieh J Y, Wang T, Lu S S. A 1.5-mW, 2.4 GHz quasi-circulator with high transmitter-to-receiver isolation in CMOS technology. IEEE Microw Wirel Compon Lett, 2014, 24, 872 doi: 10.1109/LMWC.2014.2357759[21] Tang B J, Xu J T, Geng L. Integrated active quasi-circulator with 27 dB isolation and 0.8–6.8GHz wideband by using feedback technique. 2018 IEEE MTT-S International Wireless Symposium (IWS), 2018, 1[22] Fang K, Buckwalter J F. A tunable 5–7 GHz distributed active quasi-circulator with 18-dBm output power in CMOS SOI. IEEE Microw Wirel Compon Lett, 2017, 27, 998 doi: 10.1109/LMWC.2017.2750116[23] Mung S W Y, Chan W S. Wideband active quasi-circulator with tunable isolation enhancement. J Eng, 2014, 2014, 83 doi: 10.1049/joe.2013.0136[24] Tang B J, Gui X Y, Xu J T, et al. A dual interference-canceling active quasi-circulator achieving 36-dB isolation over 6-GHz bandwidth. IEEE Microw Wirel Compon Lett, 2019, 29, 409 doi: 10.1109/LMWC.2019.2910993[25] Tang B J, Gui X Y, Xu J T, et al. A wideband active quasi-circulator with 34-dB isolation and insertion loss of 2.5 dB. IEEE Microw Wirel Compon Lett, 2020, 30, 693 doi: 10.1109/LMWC.2020.2994338[26] Zhou J, Reiskarimian N, Krishnaswamy H. Receiver with integrated magnetic-free N-path-filter-based non-reciprocal circulator and baseband self-interference cancellation for full-duplex wireless. 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016, 178[27] Reiskarimian N, Zhou J, Krishnaswamy H. A CMOS passive LPTV nonmagnetic circulator and its application in a full-duplex receiver. IEEE J Solid-State Circuits, 2017, 52, 1358 doi: 10.1109/JSSC.2017.2647924[28] Dinc T, Krishnaswamy H. 17.2 A 28 GHz magnetic-free non-reciprocal passive CMOS circulator based on spatio-temporal conductance modulation. 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, 294[29] Jain S, Agrawal A, Johnson M, et al. A 0.55-to-0.9 GHz 2.7 dB NF full-duplex hybrid-coupler circulator with 56 MHz 40 dB TX SI suppression. 2018 IEEE International Solid-State Circuits Conference - (ISSCC), 2018, 400[30] Nagulu A, Alù A, Krishnaswamy H. Fully-integrated non-magnetic 180nm SOI circulator with > 1W P1dB >+50dBm IIP3 and high isolation across 1.85 VSWR. 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2018, 104[31] Nagulu A, Krishnaswamy H. Non-magnetic 60GHz SOI CMOS circulator based on loss/dispersion-engineered switched bandpass filters. 2019 IEEE International Solid-State Circuits Conference (ISSCC), 2019, 446[32] Zhou J, Chuang T H, Dinc T, et al. Receiver with > 20MHz bandwidth self-interference cancellation suitable for FDD, co-existence and full-duplex applications. 2015 IEEE International Solid-State Circuits Conference (ISSCC), 2015, 1[33] Reiskarimian N, Zhou J, Chuang T H, et al. Analysis and design of two-port N-path bandpass filters with embedded phase shifting. IEEE Trans Circuits Syst II, 2016, 63, 728 doi: 10.1109/TCSII.2016.2530338[34] van Liempd B, Hershberg B, Raczkowski K, et al. 2.2 A +70dBm IIP3 single-ended electrical-balance duplexer in 0.18 μm SOI CMOS. 2015 IEEE International Solid-State Circuits Conference (ISSCC), 2015, 1[35] Yang D, Yuksel H, Molnar A. A wideband highly integrated and widely tunable transceiver for in-band full-duplex communication. IEEE J Solid-State Circuits, 2015, 50, 1189 doi: 10.1109/JSSC.2015.2403362[36] Nagulu A, Chen T J, Zussman G, et al. Non-magnetic 0.18 μm SOI circulator with multi-watt power handling based on switched-capacitor clock boosting. 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020, 444[37] He S, Akel N, Saavedra C E. Active quasi-circulator with high port-to-port isolation and small area. Electron Lett, 2012, 48, 848 doi: 10.1049/el.2012.0484[38] Huang D J, Kuo J L, Wang H E. A 24-GHz low power and high isolation active quasi-circulator. 2012 IEEE/MTT-S International Microwave Symposium Digest, 2012, 1[39] Kim S, Kim Y. Multi octave wideband CMOS circulator using 0.11 μm process. 2013 European Microwave Integrated Circuit Conference, 2013, 204 -
Proportional views