Citation: |
Jinyu Yang, Yang Wang, Lu Wang, Ziao Tian, Zengfeng Di, Yongfeng Mei. Tubular/helical architecture construction based on rolled-up AlN nanomembranes and resonance as optical microcavity[J]. Journal of Semiconductors, 2020, 41(4): 042601. doi: 10.1088/1674-4926/41/4/042601
****
J Y Yang, Y Wang, L Wang, Z A Tian, Z F Di, Y F Mei, Tubular/helical architecture construction based on rolled-up AlN nanomembranes and resonance as optical microcavity[J]. J. Semicond., 2020, 41(4): 042601. doi: 10.1088/1674-4926/41/4/042601.
|
Tubular/helical architecture construction based on rolled-up AlN nanomembranes and resonance as optical microcavity
DOI: 10.1088/1674-4926/41/4/042601
More Information
-
Abstract
Aluminum nitride (AlN) has attracted a great amount of interest due to the fact that these group III–V semiconductors present direct band gap behavior and are compatible with current micro-electro-mechanical systems. In this work, three dimensional (3D) AlN architectures including tubes and helices were constructed by rolling up AlN nanomembranes grown on a silicon-on-insulator wafer via magnetron sputtering. The properties of the AlN membrane were characterized through transmission electron microscopy and X-ray diffraction. The thickness of AlN nanomembranes could be tuned via the RIE thinning method, and thus micro-tubes with different diameters were fabricated. The intrinsic strain in AlN membranes was investigated via micro-Raman spectroscopy, which agrees well with theory prediction. Whispering gallery mode was observed in AlN tubular optical microcavity in photoluminescence spectrum. A postprocess involving atomic layer deposition and R6G immersion were employed on as-fabricated AlN tubes to promote the Q-factor. The AlN tubular micro-resonators could offer a novel design route for Si-based integrated light sources. In addition, the rolled-up technology paves a new way for AlN 3D structure fabrication, which is promising for AlN application in MEMS and photonics fields.-
Keywords:
- AlN nanomembranes,
- rolled-up technology,
- helices,
- optical microcavity
-
References
[1] Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III–V compound semiconductors and their alloys. J Appl Phys, 2001, 89(11), 5815 doi: 10.1063/1.1368156[2] Li L W, Bando Y, Zhu Y C, et al. Single-crystalline AlN nanotubes with carbon-layer coatings on the outer and inner surfaces via a multiwalled-carbon-nanotube-template-induced route. Adv Mater, 2005, 17(2), 213 doi: 10.1002/adma.200400105[3] Bowen C R, Kim H A, Weaver P M, et al. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ Sci, 2013, 7, 25 doi: 10.1039/C3EE42454E[4] Zheng B J, Hu W. Cubic AlN thin film formation on quartz substrate by pulse laser deposition. J Semicond, 2016, 37(6), 063003 doi: 10.1088/1674-4926/37/6/063003[5] Sinha N, Wabiszewski G E, Mahameed R, et al. Piezoelectric aluminum nitride nanoelectromechanical actuators. Appl Phys Lett, 2009, 95(5), 053106 doi: 10.1063/1.3194148[6] Xiong C, Pernice W H P, Sun X, et al. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J Phys, 2012, 14(9), 095014 doi: 10.1088/1367-2630/14/9/095014[7] Longhi S, Feng L. Unidirectional lasing in semiconductor microring lasers at an exceptional point. Photonics Res, 2017, 5(6), B1 doi: 10.1364/PRJ.5.0000B1[8] Bürger M, Ruth M, Declair S, et al. Whispering gallery modes in zinc-blende AlN microdisks containing non-polar GaN quantum dots. Appl Phys Lett, 2013, 102(8), 081105 doi: 10.1063/1.4793653[9] Wang J, Zhan T, Huang G, et al. Optical microcavities with tubular geometry: properties and applications. Laser Photonics Rev, 2014, 8(4), 521 doi: 10.1002/lpor.201300040[10] Lin X, Fang Y, Zhu L, et al. Self-rolling of oxide nanomembranes and resonance coupling in tubular optical microcavity. Adv Opt Mater, 2016, 4(6), 936 doi: 10.1002/adom.201500776[11] Kipp T, Welsch H, Strelow C, et al. Optical modes in semiconductor microtube ring resonators. Phys Rev Lett, 2006, 96(7), 077403 doi: 10.1103/PhysRevLett.96.077403[12] Huang G, Mei Y. Assembly and self-assembly of nanomembrane materials—from 2D to 3D. Small, 2018, 14(14), 1703665 doi: 10.1002/smll.201703665[13] Tian Z, Zhang L, Fang Y, et al. Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture. Adv Mater, 2017, 29(13), 1604572 doi: 10.1002/adma.201604572[14] Huang G S, Mei Y F, Cavallo F, et al. Fabrication and optical properties of C/β-SiC/Si hybrid rolled-up microtubes. J Appl Phys, 2009, 105, 016103 doi: 10.1063/1.3039089[15] Yu X, Huang W, Li M, et al. Ultra-small, high-frequency, and substrate-immune microtube inductors transformed from 2D to 3D. Sci Rep, 2015, 5, 9661 doi: 10.1038/srep09661[16] Fang Y, Li Xn, Tang S, et al. Temperature-dependent optical resonance in a thin-walled tubular oxide microcavity. Prog Nat Sci Mater, 2017, 27(4), 498 doi: 10.1016/j.pnsc.2017.03.011[17] Yan C, Xi W, Si W, et al. Highly conductive and strain-released hybrid multilayer Ge/Ti nanomembranes with enhanced lithium-ion-storage capability. Adv Mater, 2013, 25(4), 539 doi: 10.1002/adma.201203458[18] Kim J, Choi U, Pyeon J, et al. Deep-ultraviolet AlGaN/AlN core-shell multiple quantum wells on AlN nanorods via lithography-free method. Sci Rep, 2018, 8(1), 935 doi: 10.1038/s41598-017-19047-6[19] Huang G, Mei Y. Thinning and shaping solid films into functional and integrative nanomembranes. Adv Mater, 2012, 24(19), 2517 doi: 10.1002/adma.201200574[20] Akiyama M, Morofuji Y, Kamohara T, et al. Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films. J Appl Phys, 2006, 1143185 doi: 10.1063/1.2401312[21] Zhao C, Knisely K E, Colesa D J, et al. Voltage readout from a piezoelectric intracochlear acoustic transducer implanted in a living guinea pig. Sci Rep, 2019, 9, 3711 doi: 10.1038/s41598-019-39303-1[22] Ledermann N, Muralt P, Baborowski J, et al. Piezoelectric Pb(Zrx, Ti1–x)O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors. J Micromech Microeng, 2004, 14, 1650 doi: 10.1088/0960-1317/14/12/008[23] Froeter P, Yu X, Huang W, et al. 3D hierarchical architectures based on self-rolled-up silicon nitride membranes. Nanotechnology, 2013, 24(47), 475301 doi: 10.1088/0957-4484/24/47/475301[24] Dodson B W, Tsao J Y. Relaxation of strained-layer semiconductor structures via plastic flow. Appl Phys Lett, 1987, 51(17), 1325 doi: 10.1063/1.98667[25] Trodahl H J, Martin F, Muralt P, et al. Raman spectroscopy of sputtered AlN films: E2 (high) biaxial strain dependence. Appl Phys Lett, 2006, 89(6), 061905 doi: 10.1063/1.2335582[26] Yonenaga I, Shima T, Sluiter M H F. Nano-indentation hardness and elastic moduli of bulk single-crystal AlN. Jpn J Appl Phys, 2002, 41(7R), 4620 doi: 10.1143/JJAP.41.4620[27] Kuball M, Hayes J M, Prins A D, et al. Raman scattering studies on single-crystalline bulk AlN under high pressures. Appl Phys Lett, 2001, 78(6), 724 doi: 10.1063/1.1344567[28] Tang Y, Cong H, Li F, et al. Synthesis and photoluminescent property of AlN nanobelt array. Diamond Relat Mater, 2007, 16(3), 537 doi: 10.1016/j.diamond.2006.10.007[29] Cao Y G, Chen X L, Lan Y C, et al. Blue emission and Raman scattering spectrum from AlN nanocrystalline powders. J Cryst Growth, 2000, 213(1/2), 198 doi: 10.1016/S0022-0248(00)00379-1[30] Wang J, Song E, Yang C, et al. Fabrication and whispering gallery resonance of self-rolled up gallium nitride microcavities. Thin Solid Films, 2017, 627, 77 doi: 10.1016/j.tsf.2017.02.059[31] Wang J, Zhang T, Huang G, et al. Tubular oxide microcavity with high-indexcontrast walls: Mie scattering theory and 3D confinement of resonant modes. Opt Express, 2012, 20(17), 18555 doi: 10.1364/OE.20.018555 -
Supplements
19090003suppl.pdf
-
Proportional views