J. Semicond. > 2021, Volume 42 > Issue 10 > 100202

RESEARCH HIGHLIGHTS

n-Type acceptor–acceptor polymer semiconductors

Yongqiang Shi1, and Liming Ding2,

+ Author Affiliations

 Corresponding author: Yongqiang Shi, shiyq@ahnu.edu.cn; Liming Ding, ding@nanoctr.cn

DOI: 10.1088/1674-4926/42/10/100202

PDF

Turn off MathJax



[1]
Guo X, Facchetti A, Marks T J. Imide-and amide-functionalized polymer semiconductors. Chem Rev, 2014, 114, 8943 doi: 10.1021/cr500225d
[2]
Liu Q, Jiang Y, Jin K, et al. 18% efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[3]
Jin K, Xiao Z, Ding L. D18, an eximious solar polymer!. J Semicond, 2021, 42, 010502 doi: 10.1088/1674-4926/42/1/010502
[4]
Tang A, Xiao Z, Ding L, et al. ~1.2 V open-circuit voltage from organic solar cells. J Semicond, 2021, 42, 070202 doi: 10.1088/1674-4926/42/7/070202
[5]
Jin K, Xiao Z, Ding L. 18.69% PCE from organic solar cells. J Semicond, 2021, 42, 060502 doi: 10.1088/1674-4926/42/6/060502
[6]
Ji X, Xiao Z, Sun H, et al. Polymer acceptors for all-polymer solar cells. J Semicond, 2021, 42, 080202 doi: 10.1088/1674-4926/42/8/080202
[7]
Jin K, Hao F, Ding L. Solution-processable n-type organic thermoelectric materials. Sci Bull, 2020, 65, 1862 doi: 10.1016/j.scib.2020.07.036
[8]
Zhang F, Di C. Exploring thermoelectric materials from high mobility organic semiconductors. Chem Mater, 2020, 32, 2688 doi: 10.1021/acs.chemmater.0c00229
[9]
Lu Y, Wang J, Pei J. Strategies to enhance the conductivity of n-type polymer thermoelectric materials. Chem Mater, 2019, 31, 6412 doi: 10.1021/acs.chemmater.9b01422
[10]
Yan X, Xiong M, Li J, et al. Pyrazine-Flanked diketopyrrolopyrrole (DPP): A new polymer building block for high-performance n-type organic thermoelectrics. J Am Chem Soc, 2019, 141, 20215 doi: 10.1021/jacs.9b10107
[11]
Liu J, Ye G, Zee B, et al. N-type organic thermoelectrics of donor–acceptor copolymers: Improved power factor by molecular tailoring of the density of states. Adv Mater, 2018, 30, 1804290 doi: 10.1002/adma.201804290
[12]
Ke L, Ding L. Perovskite crystallization. J Semicond, 2021, 42, 080203 doi: 10.1088/1674-4926/42/8/080203
[13]
Li B, Yang K, Liao Q, et al. Imide-functionalized triarylamine-based donor-acceptor polymers as hole transporting layers for high-performance inverted perovskite solar cells. Adv Funct Mater, 2021, 2100332 doi: 10.1002/adfm.202100332
[14]
Wang Y, Chen W, Wang L, et al. Dopant-free small-molecule hole-transporting material for inverted perovskite solar cells with efficiency exceeding 21%. Adv Mater, 2019, 31, 1902781 doi: 10.1002/adma.201902781
[15]
Yang J, Zhao Z, Wang S, et al. Insight into high-performance conjugated polymers for organic field-effect transistors. Chem, 2018, 4, 2748 doi: 10.1016/j.chempr.2018.08.005
[16]
Durban M M, Kazarinoff P D, Luscombe C K. Synthesis and characterization of thiophene-containing naphthalene diimide n-type copolymers for OFET applications. Macromolecules, 2010, 43, 6348 doi: 10.1021/ma100997g
[17]
Wang Y, Nakano M, Michinobu T, et al. Naphthodithiophenediimide–benzobisthiadiazole-based polymers: Versatile n-type materials for field-effect transistors and thermoelectric devices. Macromolecules, 2017, 50, 857 doi: 10.1021/acs.macromol.6b02313
[18]
Wang Y, Takimiya K. Naphthodithiophenediimide–bithiopheneimide copolymers for high-performance n-type organic thermoelectrics: Significant impact of backbone orientation on conductivity and thermoelectric performance. Adv Mater, 2020, 32, 2002060 doi: 10.1002/adma.202002060
[19]
Wang Y, Hasegawa T, Matsumoto H, et al. Significant difference in semiconducting properties of isomeric all-acceptor polymers synthesized via direct arylation polycondensation. Angew Chem Int Ed, 2019, 58, 11893 doi: 10.1002/anie.201904966
[20]
Yuan Z, Fu B, Thomas S, et al. Unipolar electron transport polymers: A thiazole based all-electron acceptor approach. Chem Mater, 2016, 28, 6045 doi: 10.1021/acs.chemmater.6b01929
[21]
Wang Y, Guo H, Ling S, et al. Ladder-type heteroarenes: Up to 15 rings with five imide groups. Angew Chem Int Ed, 2017, 56, 9924 doi: 10.1002/anie.201702225
[22]
Shi Y, Guo H, Qin M, et al. Imide-functionalized thiazole-based polymer semiconductors: Synthesis, structure–property correlations, charge carrier polarity, and thin-film transistor performance. Chem Mater, 2018, 30, 7988 doi: 10.1021/acs.chemmater.8b03670
[23]
Shi Y, Guo H, Qin M, et al. Thiazole imide-based all-acceptor homopolymer: Achieving high-performance unipolar electron transport in organic thin-film transistors. Adv Mater, 2018, 30, 1705745 doi: 10.1002/adma.201705745
[24]
Liu J, Shi Y, Dong J, et al. Overcoming coulomb interaction improves free-charge generation and thermoelectric properties for n-doped conjugated polymers. ACS Energy Lett, 2019, 4, 1556 doi: 10.1021/acsenergylett.9b00977
[25]
Chen W, Shi Y, Wang Y, et al. N-type conjugated polymer as efficient electron transport layer for planar inverted perovskite solar cells with power conversion efficiency of 20.86%. Nano Energy, 2020, 68, 104363 doi: 10.1016/j.nanoen.2019.104363
[26]
Wang Y, Guo H, Harbuzaru A, et al. (Semi)ladder-type bithiophene imide-based all-acceptor semiconductors: Synthesis, structure–property correlations, and unipolar n-type transistor performance. J Am Chem Soc, 2018, 140, 6095 doi: 10.1021/jacs.8b02144
[27]
Shi Y, Guo H, Huang J, et al. Distannylated bithiophene imide: Enabling High-performance n-type polymer semiconductors with an acceptor–acceptor backbone. Angew Chem Int Ed, 2020, 59, 14449 doi: 10.1002/anie.202002292
[28]
Sun H, Yu H, Shi Y, et al. A narrow-bandgap n-type polymer with an acceptor–acceptor backbone enabling efficient all-polymer solar cells. Adv Mater, 2020, 32, 2004183 doi: 10.1002/adma.202004183
[29]
Shi Y, Chen W, Wu Z, et al. Imide-functionalized acceptor–acceptor copolymers as efficient electron transport layers for high-performance perovskite solar cells. J Mater Chem A, 2020, 8, 13754 doi: 10.1039/D0TA03548C
[30]
Feng K, Guo H, Wang J, et al. Cyano-functionalized bithiophene imide-based n-type polymer semiconductors: synthesis, structure –property correlations, and thermoelectric performance. J Am Chem Soc, 2021, 143, 1539 doi: 10.1021/jacs.0c11608
[31]
Wang X, Lv L, Li L, et al. High-performance all-polymer photoresponse devices based on acceptor –acceptor conjugated polymers. Adv Funct Mater, 2016, 26, 6306 doi: 10.1002/adfm.201601745
[32]
Zhao R, Dou C, Xie Z, et al. Polymer acceptor based on B←N units with enhanced electron mobility for efficient all-polymer solar cells. Angew Chem Int Ed, 2016, 55, 5313 doi: 10.1002/anie.201601305
[33]
Dong C, Deng S, Meng B, et al. Distannylated monomer of strong electron-accepting organoboron building block: Enabling acceptor–acceptor type conjugated polymers for n-type thermoelectric applications. Angew Chem Int Ed, 2021, in press doi: 10.1002/anie.202105127
Fig. 1.  Chemical structures of the representative n-type polymers with acceptor–acceptor backbone.

[1]
Guo X, Facchetti A, Marks T J. Imide-and amide-functionalized polymer semiconductors. Chem Rev, 2014, 114, 8943 doi: 10.1021/cr500225d
[2]
Liu Q, Jiang Y, Jin K, et al. 18% efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[3]
Jin K, Xiao Z, Ding L. D18, an eximious solar polymer!. J Semicond, 2021, 42, 010502 doi: 10.1088/1674-4926/42/1/010502
[4]
Tang A, Xiao Z, Ding L, et al. ~1.2 V open-circuit voltage from organic solar cells. J Semicond, 2021, 42, 070202 doi: 10.1088/1674-4926/42/7/070202
[5]
Jin K, Xiao Z, Ding L. 18.69% PCE from organic solar cells. J Semicond, 2021, 42, 060502 doi: 10.1088/1674-4926/42/6/060502
[6]
Ji X, Xiao Z, Sun H, et al. Polymer acceptors for all-polymer solar cells. J Semicond, 2021, 42, 080202 doi: 10.1088/1674-4926/42/8/080202
[7]
Jin K, Hao F, Ding L. Solution-processable n-type organic thermoelectric materials. Sci Bull, 2020, 65, 1862 doi: 10.1016/j.scib.2020.07.036
[8]
Zhang F, Di C. Exploring thermoelectric materials from high mobility organic semiconductors. Chem Mater, 2020, 32, 2688 doi: 10.1021/acs.chemmater.0c00229
[9]
Lu Y, Wang J, Pei J. Strategies to enhance the conductivity of n-type polymer thermoelectric materials. Chem Mater, 2019, 31, 6412 doi: 10.1021/acs.chemmater.9b01422
[10]
Yan X, Xiong M, Li J, et al. Pyrazine-Flanked diketopyrrolopyrrole (DPP): A new polymer building block for high-performance n-type organic thermoelectrics. J Am Chem Soc, 2019, 141, 20215 doi: 10.1021/jacs.9b10107
[11]
Liu J, Ye G, Zee B, et al. N-type organic thermoelectrics of donor–acceptor copolymers: Improved power factor by molecular tailoring of the density of states. Adv Mater, 2018, 30, 1804290 doi: 10.1002/adma.201804290
[12]
Ke L, Ding L. Perovskite crystallization. J Semicond, 2021, 42, 080203 doi: 10.1088/1674-4926/42/8/080203
[13]
Li B, Yang K, Liao Q, et al. Imide-functionalized triarylamine-based donor-acceptor polymers as hole transporting layers for high-performance inverted perovskite solar cells. Adv Funct Mater, 2021, 2100332 doi: 10.1002/adfm.202100332
[14]
Wang Y, Chen W, Wang L, et al. Dopant-free small-molecule hole-transporting material for inverted perovskite solar cells with efficiency exceeding 21%. Adv Mater, 2019, 31, 1902781 doi: 10.1002/adma.201902781
[15]
Yang J, Zhao Z, Wang S, et al. Insight into high-performance conjugated polymers for organic field-effect transistors. Chem, 2018, 4, 2748 doi: 10.1016/j.chempr.2018.08.005
[16]
Durban M M, Kazarinoff P D, Luscombe C K. Synthesis and characterization of thiophene-containing naphthalene diimide n-type copolymers for OFET applications. Macromolecules, 2010, 43, 6348 doi: 10.1021/ma100997g
[17]
Wang Y, Nakano M, Michinobu T, et al. Naphthodithiophenediimide–benzobisthiadiazole-based polymers: Versatile n-type materials for field-effect transistors and thermoelectric devices. Macromolecules, 2017, 50, 857 doi: 10.1021/acs.macromol.6b02313
[18]
Wang Y, Takimiya K. Naphthodithiophenediimide–bithiopheneimide copolymers for high-performance n-type organic thermoelectrics: Significant impact of backbone orientation on conductivity and thermoelectric performance. Adv Mater, 2020, 32, 2002060 doi: 10.1002/adma.202002060
[19]
Wang Y, Hasegawa T, Matsumoto H, et al. Significant difference in semiconducting properties of isomeric all-acceptor polymers synthesized via direct arylation polycondensation. Angew Chem Int Ed, 2019, 58, 11893 doi: 10.1002/anie.201904966
[20]
Yuan Z, Fu B, Thomas S, et al. Unipolar electron transport polymers: A thiazole based all-electron acceptor approach. Chem Mater, 2016, 28, 6045 doi: 10.1021/acs.chemmater.6b01929
[21]
Wang Y, Guo H, Ling S, et al. Ladder-type heteroarenes: Up to 15 rings with five imide groups. Angew Chem Int Ed, 2017, 56, 9924 doi: 10.1002/anie.201702225
[22]
Shi Y, Guo H, Qin M, et al. Imide-functionalized thiazole-based polymer semiconductors: Synthesis, structure–property correlations, charge carrier polarity, and thin-film transistor performance. Chem Mater, 2018, 30, 7988 doi: 10.1021/acs.chemmater.8b03670
[23]
Shi Y, Guo H, Qin M, et al. Thiazole imide-based all-acceptor homopolymer: Achieving high-performance unipolar electron transport in organic thin-film transistors. Adv Mater, 2018, 30, 1705745 doi: 10.1002/adma.201705745
[24]
Liu J, Shi Y, Dong J, et al. Overcoming coulomb interaction improves free-charge generation and thermoelectric properties for n-doped conjugated polymers. ACS Energy Lett, 2019, 4, 1556 doi: 10.1021/acsenergylett.9b00977
[25]
Chen W, Shi Y, Wang Y, et al. N-type conjugated polymer as efficient electron transport layer for planar inverted perovskite solar cells with power conversion efficiency of 20.86%. Nano Energy, 2020, 68, 104363 doi: 10.1016/j.nanoen.2019.104363
[26]
Wang Y, Guo H, Harbuzaru A, et al. (Semi)ladder-type bithiophene imide-based all-acceptor semiconductors: Synthesis, structure–property correlations, and unipolar n-type transistor performance. J Am Chem Soc, 2018, 140, 6095 doi: 10.1021/jacs.8b02144
[27]
Shi Y, Guo H, Huang J, et al. Distannylated bithiophene imide: Enabling High-performance n-type polymer semiconductors with an acceptor–acceptor backbone. Angew Chem Int Ed, 2020, 59, 14449 doi: 10.1002/anie.202002292
[28]
Sun H, Yu H, Shi Y, et al. A narrow-bandgap n-type polymer with an acceptor–acceptor backbone enabling efficient all-polymer solar cells. Adv Mater, 2020, 32, 2004183 doi: 10.1002/adma.202004183
[29]
Shi Y, Chen W, Wu Z, et al. Imide-functionalized acceptor–acceptor copolymers as efficient electron transport layers for high-performance perovskite solar cells. J Mater Chem A, 2020, 8, 13754 doi: 10.1039/D0TA03548C
[30]
Feng K, Guo H, Wang J, et al. Cyano-functionalized bithiophene imide-based n-type polymer semiconductors: synthesis, structure –property correlations, and thermoelectric performance. J Am Chem Soc, 2021, 143, 1539 doi: 10.1021/jacs.0c11608
[31]
Wang X, Lv L, Li L, et al. High-performance all-polymer photoresponse devices based on acceptor –acceptor conjugated polymers. Adv Funct Mater, 2016, 26, 6306 doi: 10.1002/adfm.201601745
[32]
Zhao R, Dou C, Xie Z, et al. Polymer acceptor based on B←N units with enhanced electron mobility for efficient all-polymer solar cells. Angew Chem Int Ed, 2016, 55, 5313 doi: 10.1002/anie.201601305
[33]
Dong C, Deng S, Meng B, et al. Distannylated monomer of strong electron-accepting organoboron building block: Enabling acceptor–acceptor type conjugated polymers for n-type thermoelectric applications. Angew Chem Int Ed, 2021, in press doi: 10.1002/anie.202105127
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2077 Times PDF downloads: 93 Times Cited by: 0 Times

    History

    Received: 08 June 2021 Revised: Online: Accepted Manuscript: 11 June 2021Uncorrected proof: 11 June 2021Published: 15 October 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yongqiang Shi, Liming Ding. n-Type acceptor–acceptor polymer semiconductors[J]. Journal of Semiconductors, 2021, 42(10): 100202. doi: 10.1088/1674-4926/42/10/100202 ****Y Q Shi, L M Ding, n-Type acceptor–acceptor polymer semiconductors[J]. J. Semicond., 2021, 42(10): 100202. doi: 10.1088/1674-4926/42/10/100202.
      Citation:
      Yongqiang Shi, Liming Ding. n-Type acceptor–acceptor polymer semiconductors[J]. Journal of Semiconductors, 2021, 42(10): 100202. doi: 10.1088/1674-4926/42/10/100202 ****
      Y Q Shi, L M Ding, n-Type acceptor–acceptor polymer semiconductors[J]. J. Semicond., 2021, 42(10): 100202. doi: 10.1088/1674-4926/42/10/100202.

      n-Type acceptor–acceptor polymer semiconductors

      DOI: 10.1088/1674-4926/42/10/100202
      More Information
      • Yongqiang Shi:received his PhD degree from Southwest Petroleum University in 2020. He was a visiting student in Xugang Guo Group at Southern University of Science and Technology in 2017-2020. In December 2020, he joined Anhui Normal University. His research focuses on the design and synthesis of n-type polymers for organic thin-film transistors, polymer solar cells, perovskite solar cells, and organic thermoelectrics
      • Liming Ding:got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editors for Science Bulletin and Journal of Semiconductors
      • Corresponding author: shiyq@ahnu.edu.cnding@nanoctr.cn
      • Received Date: 2021-06-08
      • Published Date: 2021-10-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return