Citation: |
Teng Fei, Shenqiang Zhai, Jinchuan Zhang, Ning Zhuo, Junqi Liu, Lijun Wang, Shuman Liu, Zhiwei Jia, Kun Li, Yongqiang Sun, Kai Guo, Fengqi Liu, Zhanguo Wang. High power λ ~ 8.5 μm quantum cascade laser grown by MOCVD operating continuous-wave up to 408 K[J]. Journal of Semiconductors, 2021, 42(11): 112301. doi: 10.1088/1674-4926/42/11/112301
****
T Fei, S Q Zhai, J C Zhang, N Zhuo, J Q Liu, L J Wang, S M Liu, Z W Jia, K Li, Y Q Sun, K Guo, F Q Liu, Z G Wang, High power λ ~ 8.5 μm quantum cascade laser grown by MOCVD operating continuous-wave up to 408 K[J]. J. Semicond., 2021, 42(11): 112301. doi: 10.1088/1674-4926/42/11/112301.
|
High power λ ~ 8.5 μm quantum cascade laser grown by MOCVD operating continuous-wave up to 408 K
DOI: 10.1088/1674-4926/42/11/112301
More Information
-
Abstract
Robust quantum cascade laser (QCL) enduring high temperature continuous-wave (CW) operation is of critical importance for some applications. We report on the realization of lattice-matched InGaAs/InAlAs/InP QCL materials grown by metal-organic chemical vapor deposition (MOCVD). High interface quality structures designed for light emission at 8.5 μm are achieved by optimizing and precise controlling of growth conditions. A CW output power of 1.04 W at 288 K was obtained from a 4 mm-long and 10 μm-wide coated laser. Corresponding maximum wall-plug efficiency and threshold current density were 7.1% and 1.18 kA/cm2, respectively. The device can operate in CW mode up to 408 K with an output power of 160 mW. -
References
[1] Faist J, Capasso F, Sivco D, et al. Quantum cascade laser. Science, 1994, 264(5158), 553 doi: 10.1126/science.264.5158.553[2] Hugi A, Villares G, Blaser S, et al. Mid-infrared frequency comb based on a quantum cascade laser. Nature, 2012, 492(7428), 229 doi: 10.1038/nature11620[3] Zhang J, Wang L, Zhang W, et al. Holographic fabricated continuous wave operation of distributed feedback quantum cascade lasers at λ ≈ 8.5 μm. J Semicond, 2011, 32(4), 044008 doi: 10.1088/1674-4926/32/4/044008[4] Faist J, Beck M, Allen T, et al. Quantum-cascade lasers based on a bound-to-continuum transition. Appl Phys Lett, 2001, 78(2), 147 doi: 10.1063/1.1339843[5] Beck M, Hofstetter D, Aellen T, et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science, 2002, 295(5553), 301 doi: 10.1126/science.1066408[6] Botez D, Kirch J D, Boyle C, et al. High-efficiency, high-power mid-infrared quantum cascade lasers. Opt Mater Express, 2018, 8(5), 1378 doi: 10.1364/OME.8.001378[7] Wang C A, Schwarz B, Siriani D F, et al. MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: Impact of growth and material quality on laser performance. IEEE J Sel Top Quantum Electron, 2017, 23(6), 1 doi: 10.1109/JSTQE.2017.2677899[8] Feng X, Caneau C, Leblanc H P, et al. Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ >10 μm. IEEE J Sel Top Quantum Electron, 2013, 19(4), 1200407 doi: 10.1109/JSTQE.2013.2240658[9] Schwarz B, Wang C A, Missaggia L, et al. Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector. ACS Photonics, 2017, 4(5), 1225 doi: 10.1021/acsphotonics.7b00133[10] Zhou W, Lu Q Y, Wu D H, et al. High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 microm. Opt Express, 2019, 27(11), 15776 doi: 10.1364/OE.27.015776[11] Wang C A, Schwarz B, Siriani D F, et al. Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers. J Cryst Growth, 2017, 464, 215 doi: 10.1016/j.jcrysgro.2016.11.029[12] Lyakh A, Maulini R, Tsekoun A, et al. 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach. Appl Phys Lett, 2009, 95(14), 141113 doi: 10.1063/1.3238263[13] Khurgin J B, Dikmelik Y, Liu P Q, et al. Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers. Appl Phys Lett, 2009, 94(9), 091101 doi: 10.1063/1.3093819[14] Fujita K, Furuta S, Sugiyama A, et al. High-performance λ ~8.6 μm quantum cascade lasers with single phonon-continuum depopulation structures. IEEE J Quantum Electron, 2010, 46(5), 683 doi: 10.1109/JQE.2010.2048015[15] Figueiredo P, Suttinger M, Go R, et al. Progress in high-power continuous-wave quantum cascade lasers. Appl Opt, 2017, 56(31), H15 doi: 10.1364/AO.56.000H15[16] Yu T, Liu S, Zhang J, et al. InAs-based interband cascade lasers at 4.0 μm operating at room temperature. J Semicond, 2018, 39(11), 114003 doi: 10.1088/1674-4926/39/11/114003[17] Fewster P F. Interface roughness and period variations in MQW structures determined by X-ray diffraction. J Appl Cryst, 1988, 21(5), 524 doi: 10.1107/S0021889888006569[18] Fewster P F. X-ray diffraction from low-dimensional structures. Semicond Sci Technol, 1993, 8(11), 1915 doi: 10.1088/0268-1242/8/11/001[19] Savage D, Kleiner J, Schimke N, et al. Determination of roughness correlations in multilayer films for x-ray mirrors. J Appl Phys, 1991, 69(3), 1411 doi: 10.1063/1.347281[20] Botez D, Chang C C, Mawst L J. Temperature sensitivity of the electro-optical characteristics for mid-infrared (λ = 3–16 μm)-emitting quantum cascade lasers. J Phys D, 2015, 49(4), 043001 doi: 10.1088/0022-3727/49/4/043001[21] Lyakh A, Maulini R, Tsekoun A, et al. Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency. Opt Express, 2012, 20(22), 24272 doi: 10.1364/OE.20.024272[22] Yang P, Zhang J, Gu Z, et al. Coupled-ridge waveguide quantum cascade laser array lasing at λ ~ 5 µm. J Semicond, 2021, 42(9), 092901 doi: 10.1088/1674-4926/42/9/092901[23] Wittmann A, Bonetti Y, Fischer M, et al. Distributed-feedback quantum-cascade lasers at 9 μm operating in continuous wave up to 423 K. IEEE Photonics Technol Lett, 2009, 21(12), 814 doi: 10.1109/LPT.2009.2019117[24] Chiu Y, Dikmelik Y, Liu P Q, et al. Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers. Appl Phys Lett, 2012, 101(17), 171117 doi: 10.1063/1.4764516[25] Xu G, Li A. Interface phonons in the active region of a quantum cascade laser. Phys Rev B, 2005, 71(23), 235304 doi: 10.1103/PhysRevB.71.235304[26] Boyle C, Oresick K M, Kirch J D, et al. Carrier leakage via interface-roughness scattering bridges gap between theoretical and experimental internal efficiencies of quantum cascade lasers. Appl Phys Lett, 2020, 117(5), 051101 doi: 10.1063/5.0007812[27] Semtsiv M P, Flores Y, Chashnikova M, et al. Low-threshold intersubband laser based on interface-scattering-rate engineering. Appl Phys Lett, 2012, 100(16), 163502 doi: 10.1063/1.3701824 -
Proportional views