Citation: |
Shuiying Xiang, Yanan Han, Ziwei Song, Xingxing Guo, Yahui Zhang, Zhenxing Ren, Suhong Wang, Yuanting Ma, Weiwen Zou, Bowen Ma, Shaofu Xu, Jianji Dong, Hailong Zhou, Quansheng Ren, Tao Deng, Yan Liu, Genquan Han, Yue Hao. A review: Photonics devices, architectures, and algorithms for optical neural computing[J]. Journal of Semiconductors, 2021, 42(2): 023105. doi: 10.1088/1674-4926/42/2/023105
****
S Y Xiang, Y N Han, Z W Song, X X Guo, Y H Zhang, Z X Ren, S H Wang, Y T Ma, W W Zou, B W Ma, S F Xu, J J Dong, H L Zhou, Q S Ren, T Deng, Y Liu, G Q Han, Y Hao, A review: Photonics devices, architectures, and algorithms for optical neural computing[J]. J. Semicond., 2021, 42(2): 023105. doi: 10.1088/1674-4926/42/2/023105.
|
A review: Photonics devices, architectures, and algorithms for optical neural computing
DOI: 10.1088/1674-4926/42/2/023105
More Information
-
Abstract
The explosive growth of data and information has motivated various emerging non-von Neumann computational approaches in the More-than-Moore era. Photonics neuromorphic computing has attracted lots of attention due to the fascinating advantages such as high speed, wide bandwidth, and massive parallelism. Here, we offer a review on the optical neural computing in our research groups at the device and system levels. The photonics neuron and photonics synapse plasticity are presented. In addition, we introduce several optical neural computing architectures and algorithms including photonic spiking neural network, photonic convolutional neural network, photonic matrix computation, photonic reservoir computing, and photonic reinforcement learning. Finally, we summarize the major challenges faced by photonic neuromorphic computing, and propose promising solutions and perspectives. -
References
[1] Moore G E. Cramming more components onto integrated circuits. Electron, 1965, 38(8), 114[2] Waldrop M M. The chips are down for Moore’s law. Nat News, 2016, 530(7589), 144 doi: 10.1038/530144a[3] Maass W. Networks of spiking neurons: The third generation of neural network models. Neur Netw, 1997, 10(9), 1659 doi: 10.1016/S0893-6080(97)00011-7[4] Mainen Z F, Sejnowski T J. Reliability of spike timing in neocortical neurons. Science, 1995, 268(5216), 1503 doi: 10.1126/science.7770778[5] Hopfield J J. Pattern recognition computation using action potential timing for stimulus representation. Nature, 1995, 376(6535), 33 doi: 10.1038/376033a0[6] Bi G Q, Poo M M. Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci, 1998, 18(24), 10464 doi: 10.1523/JNEUROSCI.18-24-10464.1998[7] Abbott L F, Nelson S B. Synaptic plasticity: Taming the beast. Nat Neurosci, 2000, 3, 1178 doi: 10.1038/81453[8] Bi G Q, Poo M M. Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci, 2001, 24, 139 doi: 10.1146/annurev.neuro.24.1.139[9] Schuman C D, Potok T E, Patton R M, et al. A survey of neuromorphic computing and neural networks in hardware. arXiv preprint arXiv: 1705. 06963, 2017[10] Roy K, Jaiswal A, Panda P. Towards spike-based machine intelligence with neuromorphic computing. Nature, 2019, 575, 607 doi: 10.1038/s41586-019-1677-2[11] Zhu J D, Zhang T, Yang Y C, et al. A comprehensive review on emerging artificial neuromorphic devices. Appl Phys Rev, 2020, 7, 011312 doi: 10.1063/1.5118217[12] Zhang W, Gao B, Tang J, et al. Neuro-inspired computing chips. Nat Electron, 2020, 3, 371 doi: 10.1038/s41928-020-0435-7[13] Prucnal P R, Shastri B J, de Lima T F, et al. Recent progress in semiconductor excitable lasers for photonic spike processing. Adv Opt Photon, 2016, 8(2), 228 doi: 10.1364/AOP.8.000228[14] Nahmias M A, Shastri B J, Tait A N, et al. A leaky integrate-and-fire laser neuron for ultrafast cognitive computing. IEEE J Sel Top Quantum Electron, 2013, 19(5), 1800212 doi: 10.1109/JSTQE.2013.2257700[15] Gholipour B, Bastock P, Craig C, et al. Amorphous metal-sulphide microfibers enable photonic synapses for brain-like computing. Adv Opt Mater, 2015, 5(3), 635 doi: 10.1002/adom.201570029[16] Cheng Z, Ríos C, Pernice W H P, et al. On-chip photonic synapse. Sci Adv, 2017, 3(9), e1700160 doi: 10.1126/sciadv.1700160[17] Feldmann J, Youngblood, Wright N C D, et al. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 2019, 569, 208 doi: 10.1038/s41586-019-1157-8[18] Zhuge X, Wang J, Zhuge F. Photonic synapses for ultrahigh-speed neuromorphic computing. Phys Status Solidi RRL, 2019, 13, 1900082 doi: 10.1002/pssr.201900082[19] de Lima T F, Peng H T, Tait A N, et al. Machine learning with neuromorphic photonics. J Lightwave Technol, 2019, 37(5), 1515 doi: 10.1109/JLT.2019.2903474[20] Zou W W, Ma B W, Xu S F, et al. Towards an intelligent photonic system. Sci China Inform Sci, 2020, 63, 160401 doi: 10.1007/s11432-020-2863-y[21] Shastri B J, Tait A N, de Lima T F, et al. Photonics for artificial intelligence and neuromorphic computing. arXiv preprint arXiv: 2011.00111v1, 2020[22] Hurtado A, Henning I D, Adams M J. Optical neuron using polarization switching in a 1550 nm-VCSEL. Opt Express, 2010, 18(24), 25170 doi: 10.1364/OE.18.025170[23] Coomans W, Gelens L, Beri S, et al. Solitary and coupled semiconductor ring lasers as optical spiking neurons. Phys Rev E, 2011, 84(3), 036209 doi: 10.1103/PhysRevE.84.036209[24] Hurtado A, Schires K, Henning I, et al. Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems. Appl Phys Lett, 2012, 100(10), 103703 doi: 10.1063/1.3692726[25] Xiang S Y, Wen A J, Pan W. Emulation of spiking response and spiking frequency property in VCSEL-based photonic neuron. IEEE Photonics J, 2016, 8(5), 1504109 doi: 10.1109/JPHOT.2016.2614104[26] Robertson J, Deng T, Javaloyes J. Controlled inhibition of spiking dynamics in VCSELs for neuromorphic photonics: theory and experiments. Opt Lett, 2017, 42(8), 1560 doi: 10.1364/OL.42.001560[27] Xiang S Y, Zhang Y H, Guo X X, et al. Cascadable neuron-like spiking dynamics in coupled VCSELs subject to orthogonally polarized optical pulse injection. IEEE J Sel Top Quantum Electron, 2017, 23(6), 1700207 doi: 10.1109/JSTQE.2017.2678170[28] Deng T, Robertson J, Hurtado A. Controlled propagation of spiking dynamics in vertical-cavity surface-emitting lasers: towards neuromorphic photonic networks. IEEE J Sel Top Quantum Electron, 2017, 23(6), 1800408 doi: 10.1109/JSTQE.2017.2685140[29] Xiang S Y, Zhang Y H, Guo X X, et al. Photonic generation of neuron-like dynamics using VCSELs subject to double polarized optical injection. J Lightwave Technol, 2018, 36(19), 4227 doi: 10.1109/JLT.2018.2818195[30] Deng T, Robertson J, Wu Z M, et al. Stable propagation of inhibited spiking dynamics in vertical-cavity surface-emitting lasers for neuromorphic photonic networks. IEEE Access, 2018, 6, 67951 doi: 10.1109/ACCESS.2018.2878940[31] Zhang Y H, Xiang S Y, Guo X X, et al. Polarization-resolved and polarization-multiplexed spike encoding properties in photonic neuron based on VCSEL-SA. Sci Rep, 2018, 8, 16095 doi: 10.1038/s41598-018-34537-x[32] Zhang Y H, Xiang S Y, Gong J K, et al. Spike encoding and storage properties in mutually coupled vertical-cavity surface-emitting lasers subject to optical pulse injection. Appl Opt, 2018, 57(7), 1731 doi: 10.1364/AO.57.001731[33] Zhang Y H, Xiang S Y, Guo X X, et al. All-optical inhibitory dynamics in photonic neuron based on polarization mode competition in a VCSEL with an embedded saturable absorber. Opt Lett, 2019, 44(7), 1548 doi: 10.1364/OL.44.001548[34] Xiang S Y, Ren Z, Zhang Y, et al. All-optical neuromorphic XOR operation with inhibitory dynamics of a single photonic spiking neuron based on VCSEL-SA. Opt Lett, 2020, 45(5), 1104 doi: 10.1364/OL.383942[35] Xiang S Y, Zhang Y H, Gong J K, et al. STDP-based unsupervised spike pattern learning in a photonic spiking neural network with VCSELs and VCSOAs. IEEE J Sel Top Quantum Electron, 2019, 25(6), 1700109 doi: 10.1109/JSTQE.2019.2911565[36] Robertson J, Wade, Kopp E Y, et al. Toward neuromorphic photonic networks of ultrafast spiking laser neurons. IEEE J Sel Top Quantum Electron, 2020, 26(1), 7700715 doi: 10.1109/JSTQE.2019.2931215[37] Ma B W, Zou W W. Demonstration of a distributed feedback laser diode working as a graded-potential-signaling photonic neuron and its application to neuromorphic information processing. Sci China Inform Sci, 2020, 63, 160408 doi: 10.1007/s11432-020-2887-6[38] Ma B W, Chen J P, Zou W W. A DFB-LD-based photonic neuromorphic network for spatiotemporal pattern recognition. Proceedings of Optical Fiber Communication Conference, 2020, M2K.2[39] Xiang S Y, Ren Z X, Song Z W, et al. Computing primitive of fully-VCSELs-based all-optical spiking neural network for supervised learning and pattern classification. IEEE Trans Neural Netw Learn Syst, 2020, in press[40] Toole R, Fok M P. Photonic implementation of a neuronal algorithm applicable towards angle of arrival detection and localization. Opt Express, 2015, 23(12), 16133 doi: 10.1364/OE.23.016133[41] Ren Q S, Zhang Y L, Wang R, et al. Optical spike-timing-dependent plasticity with weight-dependent learning window and reward modulation. Opt Express, 2015, 23(19), 25247 doi: 10.1364/OE.23.025247[42] Toole R, Tait A N, de Lima T F, et al. Photonic implementation of spike-timing-dependent plasticity and learning algorithms of biological neural systems. J Lightwave Technol, 2016, 34(2), 470 doi: 10.1109/JLT.2015.2475275[43] Li Q, Wang Z, Le Y S, et al. Optical implementation of neural learning algorithms based on cross-gain modulation in a semiconductor optical amplifier. Proc SPIE, 2016, 10019, 2245976[44] Xiang S Y, Gong J K, Zhang Y H, et al. Numerical implementation of wavelength-dependent photonic spike timing dependent plasticity based on VCSOA. IEEE J Quantum Electron, 2018, 54(6), 8100107 doi: 10.1109/JQE.2018.2879484[45] Lima T, Shastri B J, Tait A N, et al. Progress in neuromorphic photonics. Nanophotonics, 2017, 6(3), 577 doi: 10.1515/nanoph-2016-0139[46] Song S, Kim J, Kwon S M, et al. Recent progress of optoelectronic and all-optical neuromorphic devices: a comprehensive review of device structures, materials, and applications. Adv Intell Syst, 2020, 2000119 doi: 10.1002/aisy.202000119[47] Xiang S Y, Han Y N, Guo X X, et al. Real-time optical spike-timing dependent plasticity in a single VCSEL with dual-polarized pulsed optical injection. Sci China Inform Sci, 2020, 63, 160405 doi: 10.1007/s11432-020-2820-y[48] Song Z W, Xiang S Y, Ren Z X, et al. Spike sequence learning in a photonic spiking neural network consisting of VCSELs-SA with supervised training. IEEE J Sel Top Quantum Electron, 2020, 26(5), 1700209 doi: 10.1109/JSTQE.2020.2975564[49] Song Z W, Xiang S Y, Ren Z X, et al. Photonic spiking neural network based on excitable VCSELs-SA for sound azimuth detection. Opt Express, 2020, 28(2), 1561 doi: 10.1364/OE.381229[50] Zhang Y H, Xiang S Y, Guo X X, A. Wen, et al The winner-take-all mechanism for all-optical systems of pattern recognition and max-pooling operation. J Lightwave Technol, 2020, 38(18), 5071 doi: 10.1109/JLT.2020.3000670[51] Wang S H, Xiang S Y, Han G Q, et al. Photonic associative learning neural network based on VCSELs and STDP. J Lightwave Technol, 2020, 38(17), 4691 doi: 10.1109/JLT.2020.2995083[52] Xu S F, Wang J, Wang R, et al. High-accuracy optical convolution unit architecture for convolutional neural networks by cascaded acousto-optical modulator arrays. Opt Express, 2019, 27, 19778 doi: 10.1364/OE.27.019778[53] Xu S F, Wang J, Zou W W. Optical patching scheme for optical convolutional neural networks based on wavelength-division multiplexing and optical delay lines. Opt Lett, 2020, 45, 3689 doi: 10.1364/OL.397344[54] Xu S F, Zou X T, Ma B W, et al. Deep-learning-powered photonic analog-to digital conversion. Light Sci Appl, 2019, 8(1), 66 doi: 10.1038/s41377-019-0176-4[55] Zhou H L, Zhao Y H, Xu G X, et al. Chip-scale optical matrix computation for PageRank algorithm. IEEE J Sel Top Quantum Electron, 2020, 26, 8300910 doi: 10.1109/JSTQE.2019.2943347[56] Zhao Y H, Zhou H L, Dong J J. An optical processor for matrix computation on silicon-on-insulator. International Conference on Photonics in Switching and Computing OptoElectronics and Communications Conference, 2019[57] Zhou H L, Zhao Y H, Wei Y X, et al. All-in-one silicon photonic polarization processor. Nanophotonics, 2019, 8, 2257 doi: 10.1515/nanoph-2019-0310[58] Zhou H L, Zhao Y H, Wei Y X, et al. Multipurpose photonic polarization processor chip. Asia Communications and Photonics Conference, 2019, M4A.229[59] Zhou H L, Zhao Y H, Wang X, et al. Self-configuring and reconfigurable silicon photonic signal processor. ACS Photonics, 2020, 7, 792 doi: 10.1021/acsphotonics.9b01673[60] Maass W, Natschlager T, Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neur Comput, 2002, 14(11), 2531 doi: 10.1162/089976602760407955[61] Maass W, Natschlager T, Markram H. Fading memory and kernel properties of generic cortical microcircuit models. J Physiol-Paris, 2004, 98(4–6), 315 doi: 10.1016/j.jphysparis.2005.09.020[62] Lukosevicius M, Jaeger H. Reservoir computing approaches to recurrent neural network training. Comput Sci Rev, 2009, 3(3), 127 doi: 10.1016/j.cosrev.2009.03.005[63] Guy V D S, Brunner D, Soriano M C. Advances in photonic reservoir computing. Nanophotonics, 2017, 6(3), 561 doi: 10.1515/nanoph-2016-0132[64] Brunner D, Penkovsky B, Marquez B A, et al. Tutorial: Photonic neural networks in delay systems. J Appl Phys, 2018, 124(15), 152004 doi: 10.1063/1.5042342[65] Tanaka G, Yamane T, Héroux J B, et al. Recent advances in physical reservoir computing: A review. Neur Netw, 2019, 115, 100 doi: 10.1016/j.neunet.2019.03.005[66] Guo X X, Xiang S Y, Zhang Y H, et al. Polarization multiplexing reservoir computing based on a VCSEL with polarized optical feedback. IEEE J Sel Top Quantum Electron, 2020, 26(1), 1700109 doi: 10.1109/JSTQE.2019.2932023[67] Guo X X, Xiang S Y, Zhang Y H, et al. Four-channels reservoir computing based on polarization dynamics in mutually coupled VCSELs system. Opt Express, 2019, 27(16), 23293 doi: 10.1364/OE.27.023293[68] Guo X X, Xiang S Y, Zhang Y H, et al. Enhanced memory capacity of a neuromorphic reservoir computing system based on a VCSEL with double optical feedbacks. Sci China Inf Sci, 2020, 63(6), 160407 doi: 10.1007/s11432-020-2862-7[69] Guo X X, Xiang S Y, Zhang Y H, et al. High-speed neuromorphic reservoir computing based on a semiconductor nanolaser with optical feedback under electrical modulation. IEEE J Sel Top Quantum Electron, 2020, 26(5), 1500707 doi: 10.1109/JSTQE.2020.2987077[70] Guo X X, Xiang S Y, Y. Qu, et al Enhanced prediction performance of a neuromorphic reservoir computing using a semiconductor nanolaser with double phase conjugate feedbacks. J Lightwave Technol, 2021, 39(1), 129 doi: 10.1109/JLT.2020.3023451[71] Sutton R S, Barto A G. Reinforcement learning: an introduction. The MIT Press Cambridge, Massachusetts London, England, 1998, 712192[72] Naruse M, Mihana T, Hori H, et al. Scalable photonic reinforcement learning by time-division multiplexing of laser chaos. Sci Rep, 2018, 8(1), 10890 doi: 10.1038/s41598-018-29117-y[73] Ma Y T, Xiang S Y, Guo X X, et al. Time-delay signature concealment of chaos and ultrafast decision making in mutually coupled semiconductor lasers with a phase-modulated Sagnac loop. Opt Express, 2020, 28, 1665 doi: 10.1364/OE.384378[74] Han Y N, Xiang S Y, Wang Y, et al. Generation of multi-channel chaotic signals with time delay signature concealment and ultrafast photonic decision making based on globally-coupled semiconductor lasers network. Photonics Res, 2020, 8(11), 1792 doi: 10.1364/PRJ.403319[75] Zhou Z, Tu Z, Yin B, et al. Development trends in silicon photonics. Chin Opt Lett, 2013, 11(1), 012501 doi: 10.3788/COL201311.012501[76] Zhou Z P, Yin B, Michel J. On-chip light sources for silicon photonics. Light Sci Appl, 2015, 4, e358 doi: 10.1038/lsa.2015.131[77] Atabaki A H, Moazeni S, Pavanello F, et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 2018, 556, 349 doi: 10.1038/s41586-018-0028-z[78] Billah M R, Blaicher M, Hoose T, et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica, 2018, 5, 876 doi: 10.1364/OPTICA.5.000876[79] Guo X H, He A, Su Y K. Recent advances of heterogeneously integrated IIIV laser on Si. J Semicond, 2019, 40(10), 101304 doi: 10.1088/1674-4926/40/10/101304[80] Bai B W, Shu H W, Wang X J, et al. Towards silicon photonic neural networks for artificial intelligence. Sci China Inf Sci, 2020, 63(6), 160403 doi: 10.1007/s11432-020-2872-3[81] Bao S Y, Wang Y, Lina K, et al. A review of silicon-based wafer bonding processes, an approach to realize the monolithic integration of Si-CMOS and IIIV-on-Si wafers. J Semicond, 2020, in press[82] Ruan Z L, Zhu Y T, Chen P X, et al. Efficient hybrid integration of long-wavelength VCSELs on silicon photonic circuits. J Lightwave Technol, 2020, 38(18), 5100 doi: 10.1109/JLT.2020.2999526[83] Li Y Y, Wang Y, Yang D R, et al. Recent progress on optoelectronic synaptic devices. Sci Sin Inform, 2020, 50, 892 doi: 10.1360/SSI-2019-0248[84] Wetzstein G, Ozcan A, Gigan S, et al. Inference in artificial intelligence with deep optics and photonics. Nature, 2020, 588, 39 doi: 10.1038/s41586-020-2973-6 -
Proportional views