Citation: |
Hao Sun, Mostafa Khalil, Zifei Wang, Lawrence R. Chen. Recent progress in integrated electro-optic frequency comb generation[J]. Journal of Semiconductors, 2021, 42(4): 041301. doi: 10.1088/1674-4926/42/4/041301
****
H Sun, M Khalil, Z F Wang, L R Chen, Recent progress in integrated electro-optic frequency comb generation[J]. J. Semicond., 2021, 42(4): 041301. doi: 10.1088/1674-4926/42/4/041301.
|
Recent progress in integrated electro-optic frequency comb generation
DOI: 10.1088/1674-4926/42/4/041301
More Information
-
Abstract
Optical frequency combs have emerged as an important tool enabling diverse applications from test-and-measurement, including spectroscopy, metrology, precision distance measurement, sensing, as well as optical and microwave waveform synthesis, signal processing, and communications. Several techniques exist to generate optical frequency combs, such as mode-locked lasers, Kerr micro-resonators, and electro-optic modulation. Important characteristics of optical frequency combs include the number of comb lines, their spacing, spectral shape and/or flatness, and intensity noise. While mode-locked lasers and Kerr micro-resonators can be used to obtain a large number of comb lines compared to electro-optic modulation, the latter provides increased flexibility in tuning the comb spacing. For some applications in optical communications and microwave photonics, a high degree of integration may be more desirable over a very large number of comb lines. In this paper, we review recent progress on integrated electro-optic frequency comb generators, including those based on indium phosphide, lithium niobate, and silicon photonics. -
References
[1] Ye J, Cundiff S T. Femtosecond optical frequency comb: Principle, operation, and applications. Boston: Kluwer Academic Publishers, 2005[2] Hargrove L E, Fork R L, Pollack M A. Locking of He –Ne laser modes induced by synchronous intracavity modulation. Appl Phys Lett, 1964, 5, 4 doi: 10.1063/1.1754025[3] Hänsch T W. Nobel lecture: Passion for precision. Rev Mod Phys, 2006, 78, 1297 doi: 10.1103/RevModPhys.78.1297[4] Hall J L. Nobel lecture: Defining and measuring optical frequencies. Rev Mod Phys, 2006, 78, 1279 doi: 10.1103/RevModPhys.78.1279[5] Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology. Nature, 2002, 416, 233 doi: 10.1038/416233a[6] Suh M G, Yang Q F, Yang K Y, et al. Microresonator soliton dual-comb spectroscopy. Science, 2016, 354, 600 doi: 10.1126/science.aah6516[7] Dutt A, Joshi C, Ji X C, et al. On-chip dual-comb source for spectroscopy. Sci Adv, 2018, 4, e1701858 doi: 10.1126/sciadv.1701858[8] Suh M G, Vahala K J. Soliton microcomb range measurement. Science, 2018, 359, 884 doi: 10.1126/science.aao1968[9] Wilken T, Curto G L, Probst R A, et al. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level. Nature, 2012, 485, 611 doi: 10.1038/nature11092[10] Steinmetz T, Wilken T, Araujo-Hauck C, et al. Laser frequency combs for astronomical observations. Science, 2008, 321, 1335 doi: 10.1126/science.1161030[11] Spencer D T, Drake T, Briles T C, et al. An optical-frequency synthesizer using integrated photonics. Nature, 2018, 557, 81 doi: 10.1038/s41586-018-0065-7[12] Liang W, Eliyahu D, Ilchenko V S, et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat Commun, 2015, 6, 7957 doi: 10.1038/ncomms8957[13] Xu X Y, Wu J Y, Nguyen T G, et al. Advanced RF and microwave functions based on an integrated optical frequency comb source. Opt Express, 2018, 26, 2569 doi: 10.1364/OE.26.002569[14] Torres-Company V, Weiner A M. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photonics Rev, 2014, 8, 368 doi: 10.1002/lpor.201300126[15] Imran M, Anandarajah P M, Kaszubowska-Anandarajah A, et al. A survey of optical carrier generation techniques for terabit capacity elastic optical networks. IEEE Commun Surv Tutorials, 2018, 20, 211 doi: 10.1109/COMST.2017.2775039[16] Willner A E, Fallahpour A, Zou K H, et al. Optical signal processing aided by optical frequency combs. IEEE J Sel Top Quantum Electron, 2021, 27, 1 doi: 10.1109/JSTQE.2020.3032554[17] Lin J C, Sepehrian H, Xu Y L, et al. Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks. IEEE Photonics Technol Lett, 2018, 30, 1495 doi: 10.1109/LPT.2018.2856767[18] Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 2000, 288, 635 doi: 10.1126/science.288.5466.635[19] Ortigosa-Blanch A, Mora J, Capmany J, et al. Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser. Opt Lett, 2006, 31, 709 doi: 10.1364/OL.31.000709[20] Zhang M, Buscaino B, Wang C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 2019, 568, 373 doi: 10.1038/s41586-019-1008-7[21] Stern B, Ji X C, Okawachi Y, et al. Battery-operated integrated frequency comb generator. Nature, 2018, 562, 401 doi: 10.1038/s41586-018-0598-9[22] Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs. Science, 2011, 332, 555 doi: 10.1126/science.1193968[23] Levy J S, Gondarenko A, Foster M A, et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat Photonics, 2010, 4, 37 doi: 10.1038/nphoton.2009.259[24] Griffith A G, Lau R K W, Cardenas J, et al. Silicon-chip mid-infrared frequency comb generation. Nat Commun, 2015, 6, 1 doi: 10.1038/ncomms7299[25] Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators. Science, 2018, 361, eaan8083 doi: 10.1126/science.aan8083[26] Yi X, Yang Q F, Yang K Y, et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2015, 2, 1078 doi: 10.1364/OPTICA.2.001078[27] Chen H J, Ji Q X, Wang H, et al. Chaos-assisted two-octave-spanning microcombs. Nat Commun, 2020, 11, 2336 doi: 10.1038/s41467-020-15914-5[28] Parriaux A, Hammani K, Millot G. Electro-optic frequency combs. Adv Opt Photon, 2020, 12, 223 doi: 10.1364/AOP.382052[29] Gheorma I L, Gopalakrishnan G K. Flat frequency comb generation with an integrated dual-parallel modulator. IEEE Photonics Technol Lett, 2007, 19, 1011 doi: 10.1109/LPT.2007.898766[30] Jiang Z, Huang C B, Leaird D E, et al. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nat Photonics, 2007, 1, 463 doi: 10.1038/nphoton.2007.139[31] Wu R, Supradeepa V R, Long C M, et al. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt Lett, 2010, 35, 3234 doi: 10.1364/OL.35.003234[32] Soto M A, Alem M, Amin Shoaie M, et al. Optical sinc-shaped Nyquist pulses of exceptional quality. Nat Commun, 2013, 4, 2898 doi: 10.1038/ncomms3898[33] Weimann C, Schindler P C, Palmer R, et al. Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission. Opt Express, 2014, 22, 3629 doi: 10.1364/OE.22.003629[34] Demirtzioglou I, Lacava C, Bottrill K R H, et al. Frequency comb generation in a silicon ring resonator modulator. Opt Express, 2018, 26, 790 doi: 10.1364/OE.26.000790[35] Buscaino B, Zhang M, Lončar M, et al. Design of efficient resonator-enhanced electro-optic frequency comb generators. J Lightwave Technol, 2020, 38, 1400 doi: 10.1109/JLT.2020.2973884[36] Cordette S, Vedadi A, Shoaie M A, et al. Bandwidth and repetition rate programmable Nyquist sinc-shaped pulse train source based on intensity modulators and four-wave mixing. Opt Lett, 2014, 39, 6668 doi: 10.1364/OL.39.006668[37] Yu M J, Wang C, Zhang M, et al. Chip-based lithium-niobate frequency combs. IEEE Photonics Technol Lett, 2019, 31, 1894 doi: 10.1109/LPT.2019.2950567[38] Ren T H, Zhang M, Wang C, et al. An integrated low-voltage broadband lithium niobate phase modulator. IEEE Photonics Technol Lett, 2019, 31, 889 doi: 10.1109/LPT.2019.2911876[39] Shams-Ansari A, Yu M J, Chen Z J, et al. Microring electro-optic frequency comb sources for dual-comb spectroscopy. CLEO: QELS_Fundamental Science, 2019, JTh5B. 8[40] Zhang M, Reimer C, He L Y, et al. Microresonator frequency comb generation with simultaneous Kerr and electro-optic nonlinearities. Conference on Lasers and Electro-Optics, 2019[41] Xu M Y, He M B, Liu X Y, et al. Integrated lithium niobate modulator and frequency comb generator based on fabry-perot resonators. Conference on Lasers and Electro-Optics, 2020[42] Yokota N, Yasaka H. Operation strategy of InP Mach–Zehnder modulators for flat optical frequency comb generation. IEEE J Quantum Electron, 2016, 52, 1 doi: 10.1109/JQE.2016.2583921[43] Slavík R, Farwell S G, Wale M J, et al. Compact optical comb generator using InP tunable laser and push-pull modulator. IEEE Photonics Technol Lett, 2015, 27, 217 doi: 10.1109/LPT.2014.2365259[44] Andriolli N, Cassese T, Chiesa M, et al. Photonic integrated fully tunable comb generator cascading optical modulators. J Lightwave Technol, 2018, 36, 5685 doi: 10.1109/JLT.2018.2877020[45] Bontempi F, Andriolli N, Scotti F, et al. Comb line multiplication in an InP integrated photonic circuit based on cascaded modulators. IEEE J Sel Top Quantum Electron, 2019, 25, 1 doi: 10.1109/JSTQE.2019.2911459[46] Nagarjun K P, Jeyaselvan V, Selvaraja S K, et al. Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators. Opt Express, 2018, 26, 10744 doi: 10.1364/OE.26.010744[47] Wu X R, Tsang H K. Flat-top frequency comb generation with silicon microring modulator and filter. Conference on Lasers and Electro-Optics, 2017[48] Xu Y L, Lin J C, Dubé-Demers R, et al. Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators. Opt Lett, 2018, 43, 1554 doi: 10.1364/OL.43.001554[49] Maram R, Naghdi B, Samani A, et al. Silicon microring modulator with a pin-diode-loaded multimode interferometer coupler. 2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), 2019[50] Khalil M, Maram R, Naghdi B, et al. Electro-optic frequency comb generation using cascaded silicon microring modulators. OSA Advanced Photonics Congress (AP), 2020[51] Wang Z F, Ma M, Sun H, et al. Optical frequency comb generation using CMOS compatible cascaded Mach–Zehnder modulators. IEEE J Quantum Electron, 2019, 55, 1 doi: 10.1109/JQE.2019.2948152[52] Liu S Q, Wu K, Zhou L J, et al. Optical frequency comb generation and microwave synthesis with integrated cascaded silicon modulators. Conference on Lasers and Electro-Optics, 2018[53] Liu S Q, Wu K, Zhou L J, et al. Optical frequency comb and nyquist pulse generation with integrated silicon modulators. IEEE J Sel Top Quantum Electron, 2020, 26, 1 doi: 10.1109/JSTQE.2020.2996962[54] Dubé-Demers R, LaRochelle S, Shi W. Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator. Optica, 2016, 3, 622 doi: 10.1364/OPTICA.3.000622[55] Marpaung D, Roeloffzen C, Heideman R, et al. Integrated microwave photonics. Laser Photonics Rev, 2013, 7, 506 doi: 10.1002/lpor.201200032[56] Ogiso Y, Ozaki J, Ueda Y, et al. Over 67 GHz bandwidth and 1.5 V vπ InP-based optical IQ modulator with n-i-p-n heterostructure. J Lightwave Technol, 2017, 35, 1450 doi: 10.1109/JLT.2016.2639542[57] Williams K A, Bente E A J M, Heiss D, et al. InP photonic circuits using generic integration. Photon Res, 2015, 3, B60 doi: 10.1364/PRJ.3.000B60[58] Kish F A, Welch D, Nagarajan R, et al. Current status of large-scale InP photonic integrated circuits. IEEE J Quantum Electron, 2011, 7, 1470 doi: 10.1109/JSTQE.2011.2114873[59] Bazzan M, Sada C. Optical waveguides in lithium niobate: Recent developments and applications. Appl Phys Rev, 2015, 2, 040603 doi: 10.1063/1.4931601[60] Wu R B, Wang M, Xu J, et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials, 2018, 8, 910 doi: 10.3390/nano8110910[61] Zhang M, Wang C, Cheng R, et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 2017, 4, 1536 doi: 10.1364/OPTICA.4.001536[62] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562, 101 doi: 10.1038/s41586-018-0551-y[63] He M B, Xu M Y, Ren Y X, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat Photonics, 2019, 13, 359 doi: 10.1038/s41566-019-0378-6[64] Xu D X, Densmore A, Waldron P, et al. High bandwidth SOI photonic wire ring resonators using MMI couplers. Opt Express, 2007, 15, 3149 doi: 10.1364/OE.15.003149[65] Jacques M, Xing Z P, Samani A, et al. 240 gbit/s silicon photonic Mach-Zehnder modulator enabled by two 2.3-Vpp drivers. J Lightwave Technol, 2020, 38, 2877 doi: 10.1109/JLT.2020.2985589[66] Pérez D, Gasulla I, Capmany J. Programmable multifunctional integrated nanophotonics. Nanophotonics, 2018, 7, 1351 doi: 10.1515/nanoph-2018-0051[67] Baghban M A, Schollhammer J, Errando-Herranz C, et al. Bragg gratings in thin-film LiNbO3 waveguides. Opt Express, 2017, 25, 32323 doi: 10.1364/OE.25.032323[68] Pohl D, Kaufmann F, Escalé M R, et al. Tunable bragg grating filters and resonators in lithium niobate-on-insulator waveguides. Conference on Lasers and Electro-Optics, 2020 -
Proportional views