J. Semicond. > 2022, Volume 43 > Issue 10 > 100202

RESEARCH HIGHLIGHTS

Superfluorescence from halide perovskite nanocrystal superlattices

Liang Chu1, Lixiu Zhang2 and Liming Ding2,

+ Author Affiliations

 Corresponding author: Liming Ding, ding@nanoctr.cn

DOI: 10.1088/1674-4926/43/10/100202

PDF

Turn off MathJax



[1]
Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc, 1993, 115, 8706 doi: 10.1021/ja00072a025
[2]
Murray C B, Kagan C R, Bawendi M G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science, 1995, 270, 1335 doi: 10.1126/science.270.5240.1335
[3]
Toso S, Baranov D, Giannini C, et al. Wide-angle X-ray diffraction evidence of structural coherence in CsPbBr3 nanocrystal superlattices. ACS Mater Lett, 2019, 1, 272 doi: 10.1021/acsmaterialslett.9b00217
[4]
Deng K, Luo Z, Tan L, et al. Self-assembly of anisotropic nanoparticles into functional superstructure. Chem Soc Rev, 2020, 49, 6002 doi: 10.1039/D0CS00541J
[5]
Tong Y, Yao E P, Manzi A, et al. Spontaneous self-assembly of perovskite nanocrystals into electronically coupled supercrystals: toward filling the green gap. Adv Mater, 2018, 30, 1801117 doi: 10.1002/adma.201801117
[6]
Vila-Liarte D, Feil M W, Manzi A, et al. Templated-assembly of CsPbBr3 perovskite nanocrystals into 2D photonic supercrystals with amplified spontaneous emission. Angew Chem Int Ed, 2020, 59, 17305 doi: 10.1002/anie.202011445
[7]
Penzo E, Loiudice A, Barnard E S, et al. Long-range exciton diffusion in two-dimensional assemblies of cesium lead bromide perovskite nanocrystals. ACS Nano, 2020, 14, 6999 doi: 10.1021/acsnano.0c01536
[8]
Rainò G, Becker M, Bodnarchuk M, et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature, 2018, 563, 671 doi: 10.1038/s41586-018-0683-0
[9]
Zhou C, Zhong Y, Dong H, et al. Cooperative excitonic quantum ensemble in perovskite-assembly superlattice microcavities. Nat Comm, 2020, 11, 329 doi: 10.1038/s41467-019-14078-1
[10]
Cherniukh I, Rainò G, Stöferle T, et al. Perovskite-type superlattices from lead halide perovskite nanocubes. Nature, 2021, 593, 535 doi: 10.1038/s41586-021-03492-5
[11]
Biliroglu M, Findik G, Mendes J, et al. Room-temperature superfluorescence in hybrid perovskites and its origins. Nat Photo, 2022, 16, 324 doi: 10.1038/s41566-022-00974-4
[12]
Zhang L X, Pan X Y, Liu L, et al. Star perovskite materials. J Semicond, 2022, 43, 030203 doi: 10.1088/1674-4926/43/3/030203
[13]
Ke L L, Ding L M. Perovskite crystallization. J Semicond, 2021, 42, 080203 doi: 10.1088/1674-4926/42/8/080203
[14]
Zhou F, Li Z, Chen H, et al. Application of perovskite nanocrystals (NCs)/quantum dots (QDs) in solar cells. Nano Energy, 2020, 73, 104757 doi: 10.1016/j.nanoen.2020.104757
[15]
Wang J, Wang S F, Ding L M. The physical origin of stimulated emission in perovskites. J Semicond, 2022, 43, 050202 doi: 10.1088/1674-4926/43/5/050202
[16]
Mei X Y, Zhang L X, Zhang X L, et al. Perovskite nanocrystals for light-emitting diodes. J Semicond, 2022, 43, 090201 doi: 10.1088/1674-4926/43/9/090201
[1]
Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc, 1993, 115, 8706 doi: 10.1021/ja00072a025
[2]
Murray C B, Kagan C R, Bawendi M G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science, 1995, 270, 1335 doi: 10.1126/science.270.5240.1335
[3]
Toso S, Baranov D, Giannini C, et al. Wide-angle X-ray diffraction evidence of structural coherence in CsPbBr3 nanocrystal superlattices. ACS Mater Lett, 2019, 1, 272 doi: 10.1021/acsmaterialslett.9b00217
[4]
Deng K, Luo Z, Tan L, et al. Self-assembly of anisotropic nanoparticles into functional superstructure. Chem Soc Rev, 2020, 49, 6002 doi: 10.1039/D0CS00541J
[5]
Tong Y, Yao E P, Manzi A, et al. Spontaneous self-assembly of perovskite nanocrystals into electronically coupled supercrystals: toward filling the green gap. Adv Mater, 2018, 30, 1801117 doi: 10.1002/adma.201801117
[6]
Vila-Liarte D, Feil M W, Manzi A, et al. Templated-assembly of CsPbBr3 perovskite nanocrystals into 2D photonic supercrystals with amplified spontaneous emission. Angew Chem Int Ed, 2020, 59, 17305 doi: 10.1002/anie.202011445
[7]
Penzo E, Loiudice A, Barnard E S, et al. Long-range exciton diffusion in two-dimensional assemblies of cesium lead bromide perovskite nanocrystals. ACS Nano, 2020, 14, 6999 doi: 10.1021/acsnano.0c01536
[8]
Rainò G, Becker M, Bodnarchuk M, et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature, 2018, 563, 671 doi: 10.1038/s41586-018-0683-0
[9]
Zhou C, Zhong Y, Dong H, et al. Cooperative excitonic quantum ensemble in perovskite-assembly superlattice microcavities. Nat Comm, 2020, 11, 329 doi: 10.1038/s41467-019-14078-1
[10]
Cherniukh I, Rainò G, Stöferle T, et al. Perovskite-type superlattices from lead halide perovskite nanocubes. Nature, 2021, 593, 535 doi: 10.1038/s41586-021-03492-5
[11]
Biliroglu M, Findik G, Mendes J, et al. Room-temperature superfluorescence in hybrid perovskites and its origins. Nat Photo, 2022, 16, 324 doi: 10.1038/s41566-022-00974-4
[12]
Zhang L X, Pan X Y, Liu L, et al. Star perovskite materials. J Semicond, 2022, 43, 030203 doi: 10.1088/1674-4926/43/3/030203
[13]
Ke L L, Ding L M. Perovskite crystallization. J Semicond, 2021, 42, 080203 doi: 10.1088/1674-4926/42/8/080203
[14]
Zhou F, Li Z, Chen H, et al. Application of perovskite nanocrystals (NCs)/quantum dots (QDs) in solar cells. Nano Energy, 2020, 73, 104757 doi: 10.1016/j.nanoen.2020.104757
[15]
Wang J, Wang S F, Ding L M. The physical origin of stimulated emission in perovskites. J Semicond, 2022, 43, 050202 doi: 10.1088/1674-4926/43/5/050202
[16]
Mei X Y, Zhang L X, Zhang X L, et al. Perovskite nanocrystals for light-emitting diodes. J Semicond, 2022, 43, 090201 doi: 10.1088/1674-4926/43/9/090201
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 820 Times PDF downloads: 85 Times Cited by: 0 Times

    History

    Received: 02 July 2022 Revised: Online: Accepted Manuscript: 05 July 2022Uncorrected proof: 05 July 2022Published: 01 October 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Liang Chu, Lixiu Zhang, Liming Ding. Superfluorescence from halide perovskite nanocrystal superlattices[J]. Journal of Semiconductors, 2022, 43(10): 100202. doi: 10.1088/1674-4926/43/10/100202 ****Liang Chu, Lixiu Zhang, Liming Ding. 2022: Superfluorescence from halide perovskite nanocrystal superlattices. Journal of Semiconductors, 43(10): 100202. doi: 10.1088/1674-4926/43/10/100202
      Citation:
      Liang Chu, Lixiu Zhang, Liming Ding. Superfluorescence from halide perovskite nanocrystal superlattices[J]. Journal of Semiconductors, 2022, 43(10): 100202. doi: 10.1088/1674-4926/43/10/100202 ****
      Liang Chu, Lixiu Zhang, Liming Ding. 2022: Superfluorescence from halide perovskite nanocrystal superlattices. Journal of Semiconductors, 43(10): 100202. doi: 10.1088/1674-4926/43/10/100202

      Superfluorescence from halide perovskite nanocrystal superlattices

      DOI: 10.1088/1674-4926/43/10/100202
      More Information
      • Liang Chu:received his PhD from Huazhong University of Science and Technology in 2014. Now he is a professor at Hangzhou Dianzi University. His research interests include perovskite solar cells, photodetectors, and memristors
      • Lixiu Zhang:got her BS from Soochow University in 2019. Now she is a PhD student at University of Chinese Academy of Sciences under the supervision of Prof. Liming Ding. Her research focuses on perovskite solar cells
      • Liming Ding:got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and ArgonneNational Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editor for Journal of Semiconductors
      • Corresponding author: ding@nanoctr.cn
      • Received Date: 2022-07-02
        Available Online: 2022-07-05

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return