J. Semicond. > 2022, Volume 43 > Issue 11 > 112501

ARTICLES

(Ba1−xNax)F(Zn1−xMnx)Sb: A novel fluoride-antimonide magnetic semiconductor with decoupled charge and spin doping

Xueqin Zhao1, Jinou Dong1, Licheng Fu1, Yilun Gu1, Rufei Zhang1, Qiaolin Yang1, Lingfeng Xie1, Yinsong Tang1 and Fanlong Ning1, 2, 3,

+ Author Affiliations

 Corresponding author: Fanlong Ning, ningfl@zju.edu.cn

DOI: 10.1088/1674-4926/43/11/112501

PDF

Turn off MathJax

Abstract: We report the successful synthesis and characterization of a novel 1111-type magnetic semiconductor (Ba1−xNax)F(Zn1−xMnx)Sb (0.05 ≤ x ≤ 0.175) with tetragonal ZrSiCuAs-type structure, which is isostructural to the layered iron-based superconductor La(O,F)FeAs. Na substitutions for Ba and Mn substitutions for Zn introduce carriers and local magnetic moments, respectively. Ferromagnetic interaction is formed when Na and Mn are codoped, demonstrating that local magnetic moments are mediated by carriers. Iso-thermal magnetization shows that the coercive field is as large as ~ 12 000 Oe, which is also reflected in the large split between the temperature-dependent magnetization in zero-field-cooling and field-cooling condition. AC susceptibility under zero field demonstrates that samples evolve into spin-glass state below spin freezing temperature Tf. The measurements of temperature-dependent resistivity indicate that (Ba1−xNax)F(Zn1−xMnx)Sb exhibits semiconducting behaviour.

Key words: magnetic semiconductorsferromagnetic interactioncarriersspin-glass



[1]
Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281, 951 doi: 10.1126/science.281.5379.951
[2]
Dietl T, Ohno H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev Mod Phys, 2014, 86, 187 doi: 10.1103/RevModPhys.86.187
[3]
Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater, 2010, 9, 965 doi: 10.1038/nmat2898
[4]
Dietl T, Bonanni A, Ohno H. Families of magnetic semiconductors — an overview. J Semiconduct, 2019, 40, 080301 doi: 10.1088/1674-4926/40/8/080301
[5]
Gu Y L, Guo S L, Ning F L. Progress on microscopic properties of diluted magnetic semiconductors by NMR and μSR. J Semicond, 2019, 40, 081506 doi: 10.1088/1674-4926/40/8/081506
[6]
Zhao G Q, Deng Z, Jin C Q. Advances in new generation diluted magnetic semiconductors with independent spin and charge doping. J Semicond, 2019, 40, 081505 doi: 10.1088/1674-4926/40/8/081505
[7]
Munekata H, Ohno H, von Molnar S, et al. Diluted magnetic III-V semiconductors. Phys Rev Lett, 1989, 63, 1849 doi: 10.1103/PhysRevLett.63.1849
[8]
Wang M, Campion R P, Rushforth A W, et al. Achieving high curie temperature in (Ga, Mn)As. Appl Phys Lett, 2008, 93, 132103 doi: 10.1063/1.2992200
[9]
Chen L, Yang X, Yang F H, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584 doi: 10.1021/nl201187m
[10]
Ferrand D, Cibert J, Bourgognon C, et al. Carrier-induced ferromagnetic interactions in p-doped Zn1− xMnxTe epilayers. J Cryst Growth, 2000, 214/215, 387 doi: 10.1016/S0022-0248(00)00114-7
[11]
Haury A, Wasiela A, Arnoult A, et al. Observation of a ferromagnetic transition induced by two-dimensional hole gas in modulation-doped CdMnTe quantum wells. Phys Rev Lett, 1997, 79, 511 doi: 10.1103/PhysRevLett.79.511
[12]
Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287, 1019 doi: 10.1126/science.287.5455.1019
[13]
Dietl T, Ohno H, Matsukura F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys Rev B, 2001, 63, 195205 doi: 10.1103/PhysRevB.63.195205
[14]
Reed M L, El-Masry N A, Stadelmaier H H, et al. Room temperature ferromagnetic properties of (Ga, Mn)N. Appl Phys Lett, 2001, 79, 3473 doi: 10.1063/1.1419231
[15]
Guo S L, Ning F L. Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors. Chin Phys B, 2018, 27, 097502 doi: 10.1088/1674-1056/27/9/097502
[16]
Deng Z, Jin C Q, Liu Q Q, et al. Li(Zn,Mn)As as a new generation ferromagnet based on a 1-2-5 semiconductor. Nat Commun, 2011, 2, 1 doi: 10.1038/ncomms1425
[17]
Ding C, Man H Y, Qin C, et al. (La1- xBax)(Zn1- xMnx)AsO: A two dimensional “1111” diluted magnetic semiconductor in bulk form. Phys Rev B, 2013, 88, 041102 doi: 10.1103/PhysRevB.88.041102
[18]
Masek J, Kudrnovský J, MȢca F, et al. Dilute moment n-type ferromagnetic semiconductor Li(Zn, Mn)As. Phys Rev Lett, 2007, 98, 067202 doi: 10.1103/PhysRevLett.98.067202
[19]
Wang X C, Liu Q Q, Lv Y X, et al. The superconductivity at 18 K in LiFeAs system. Solid State Commun, 2008, 148, 538 doi: 10.1016/j.ssc.2008.09.057
[20]
Zhao K, Deng Z, Wang X C, et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the n122o iron-based superconductors. Nat Commun, 2013, 4, 1442 doi: 10.1038/ncomms2447
[21]
Zhao K, Chen B J, Zhao G Q, et al. Ferromagnetism at 230 K in (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 diluted magnetic semiconductor. Chin Sci Bull, 2014, 59, 2524 doi: 10.1007/s11434-014-0398-z
[22]
Dunsiger S R, Carlo J P, Goko T, et al. Spatially homogeneous ferromagnetism of (Ga, Mn)As. Nat Mater, 2010, 9, 299 doi: 10.1038/nmat2715
[23]
Yang X J, Li Y K, Shen C Y, et al. Sr and Mn co-doped LaCuSO: A wide band gap oxide diluted magnetic semiconductor with TC around 200 K. Appl Phys Lett, 2013, 103, 022410 doi: 10.1063/1.4813540
[24]
Agulyansky A. Main principals of the chemistry of tantalum and niobium fluoride compounds. Elsevier, 2004
[25]
Toby B H, Von Dreele R B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr, 2013, 46, 544 doi: 10.1107/S0021889813003531
[26]
Johnson V, Jeitschko W. ZrCuSiAs: A “filled” PbFCl type. J Solid State Chem, 1974, 11, 161 doi: 10.1016/0022-4596(74)90111-X
[27]
Kamihara Y, Watanabe T, Hirano M, et al. Iron-based layered superconductor La[O1– xF x] FeAs (x = 0.05–0.12) with Tc = 26 K. J Am Chem Soc, 2008, 130, 3296 doi: 10.1021/ja800073m
[28]
Kabbour H, Cario L, Boucher F. Rational design of new inorganic compounds with the ZrSiCuAs structure type using 2D building blocks. J Mater Chem, 2005, 15, 3525 doi: 10.1039/b506031a
[29]
Fu L C, Gu Y L, Guo S L, et al. Ferromagnetism in fluoride-antimonide SrF(Zn1–2 xMnxCux)Sb with a quasi two dimensional structure . J Magn Magn Mater, 2019, 483, 95 doi: 10.1016/j.jmmm.2019.03.091
[30]
Dho J, Kim W S, Hur N H. Reentrant spin glass behavior in Cr-doped perovskite manganite. Phys Rev Lett, 2002, 89, 027202 doi: 10.1103/PhysRevLett.89.027202
[31]
Zhang H J, Zhang R F, Fu L C, et al. (La1− xSrx)(Zn1− xMnx)SbO: A novel 1111-type diluted magnetic semiconductor. Acta Physica Sinica, 2021, 70, 107501 doi: 10.7498/aps.70.20201966
[32]
Gu Y L, Zhang H J, Zhang R F, et al. A novel diluted magnetic semiconductor (Ca, Na)(Zn, Mn)2Sb2 with decoupled charge and spin doping. Chin Phys B, 2020, 29, 057507 doi: 10.1088/1674-1056/ab892e
[33]
Fu L C, Gu Y L, Zhi G X, et al. Drastic improvement of Curie temperature by chemical pressure in N-type diluted magnetic semiconductor Ba(Zn, Co)2As2. Sci Rep, 2021, 11, 7652 doi: 10.1038/s41598-021-86205-2
[34]
Chen B J, Deng Z, Li W M, et al. New fluoride-arsenide diluted magnetic semiconductor (Ba, K)F(Zn, Mn)As with independent spin and charge doping. Sci Rep, 2016, 6, 36578 doi: 10.1038/srep36578
[35]
Zhi G X, Guo S L, Zhang R F, et al. Cu2(Zn, Mn)(Sn, Al)Se4: A diluted magnetic semiconductor with decoupled charge and spin doping. J Magn Magn Mater, 2021, 536, 168064 doi: 10.1016/j.jmmm.2021.168064
[36]
Liu X F, Matsuishi S, Fujitsu S, et al. Spin-glass-like behavior of CaNi1−xMnxGe. Phys Rev B, 2011, 84, 214439 doi: 10.1103/PhysRevB.84.214439
[37]
Lekshmi P N, Raji G R, Vasundhara M. Re-entrant spin glass behaviour and magneto-dielectric effect in insulating Sm2NiMnO6 double perovskite. J Mater Chem C, 2013, 1, 6565 doi: 10.1039/c3tc31203h
[38]
Man H Y, Guo S L, Sui Y, et al. Ba(Zn1−2 xMnxCux)2As2: A bulk form diluted ferromagnetic semiconductor with Mn and Cu codoping at Zn sites. Sci Rep, 2015, 5, 15507 doi: 10.1038/srep15507
[39]
Yu S, Zhao G Q, Peng Y, et al. (Ba, K)(Zn, Mn)2Sb2: A new type of diluted magnetic semiconductor. Crystals, 2020, 10, 690 doi: 10.3390/cryst10080690
[40]
Binder K, Young A P. Spin glasses: Experimental facts, theoretical concepts, and open questions. Rev Mod Phys, 1986, 58, 801 doi: 10.1103/RevModPhys.58.801
[41]
Han W, Zhao K, Wang X C, et al. Diluted ferromagnetic semiconductor (LaCa)(ZnMn)SbO isostructural to “1111” type iron pnictide superconductors. Sci China Phys Mech Astron, 2013, 56, 2026 doi: 10.1007/s11433-013-5320-1
[42]
Jungwirth T, Sinova J, Mašek J, et al. Theory of ferromagnetic (III, Mn)V semiconductors. Rev Mod Phys, 2006, 78, 809 doi: 10.1103/RevModPhys.78.809
Fig. 1.  (Color online) (a) The polycrystal powder X-ray diffraction patterns of (Ba1−xNax)F(Zn1−xMnx)Sb (x = 0.00, 0.05, 0.075, 0.10, 0.125, 0.15, and 0.175). Traces of impurities ZnSb are marked as stars (*). (b) The Rietveld refinement result of (Ba0.875Na0.125)F(Zn0.875Mn0.125)Sb. Inset shows the tetragonal ZrCuSiAs-type crystal structure of parent compound BaFZnSb. (c) Lattice parameters a and c versus doping level x of (Ba1−xNax)F(Zn1−xMnx)Sb (x = 0.00, 0.05, 0.075, 0.10, 0.125, 0.15, and 0.175). (d) The unit cell volume of (Ba1−xNax)F(Zn1−xMnx)Sb (x = 0.00, 0.05, 0.075, 0.10, 0.125, 0.15, and 0.175).

Fig. 2.  (Color online) (a) The temperature dependence of DC magnetization for parent phase BaFZnSb and (Ba0.95Na0.05)FZnSb under field-cooling mode in an external magnetic field of 100 Oe. The data (open circles) are the data dots, and the solid lines are the Curie-Weiss fitting results. (b) The temperature dependent magnetization (M) for (Ba1−xNax)F(Zn1−xMnx)Sb (x = 0.05, 0.075, 0.10, 0.125, 0.15 and 0.175) in both zero-field-cooling (ZFC) and field-cooling (FC) procedures under an external magnetic field of 100 Oe. Inset shows the enlarged M(T) curves for all specimens at low temperature. Arrow marks $T_{\rm{irr}}$ for x = 0.10. (c) The plot of $ 1/(\chi-{\chi}_{0}) $ versus T for (Ba1−xNax)F(Zn1−xMnx)Sb (x = 0.05, 0.075, 0.10, 0.125, 0.15 and 0.175) under FC condition. Arrows mark the Weiss temperatures. Inset shows the enlarged plot of $ 1/(\chi-{\chi}_{0}) $ versus T for all of specimens below 30 K. (d) Iso-thermal magnetization for (Ba1−xNax)F(Zn1−xMnx)Sb (x = 0.05, 0.075, 0.10, 0.125, 0.15 and 0.175) at 2 K. Inset shows the enlarged M(H) curves for all of specimens under an external magnetic field $B_{\rm{ext}}$ from –20 000 to 20 000 Oe.

Fig. 3.  (Color online) The (a) real part $ {\chi}' $ and (b) imaginary part $ {\chi}'' $ of AC susceptibility with varying frequencies f under zero field for (Ba0.9Na0.1)F(Zn0.9Mn0.1)Sb. (c) A frequency dependence of spin freezing temperature $ T_{\rm f} $ for (Ba0.9Na0.1)F(Zn0.9Mn0.1)Sb.

Fig. 4.  (Color online) Temperature-dependent resistivity measurements for (Ba1−xNax)F(Zn1−yMny)Sb (x = 0.00, y = 0.00; x = 0.05, y = 0.00; x = 0.05, y = 0.05; x = 0.075, y = 0.075; x = 0.10, y = 0.10; x = 0.125, y = 0.125; x = 0.15, y = 0.15; x = 0.175, y = 0.175).

Table 1.   The Weiss temperature θ, the base temperature magnetic moment $M_{\rm{base}}$, the effective magnetic moment $\mu_{\rm{eff}}$ and the coercive field $ H_{\rm{C}} $ for (Ba1−xNax)F(Zn1−xMnx)Sb for x = 0.05, 0.075, 0.10, 0.125, 0.15 and 0.175.

xθ (K)$M_{\rm{base}}$ (${\mu}_{\rm B}/{\rm Mn}$)$\mu_{\rm{eff} }$ ($ {\mu}_{\rm B} $/Mn)$ H_{\rm{C}} $ (Oe)
0.0540.003833.2312000
0.07580.005883.2510500
0.10130.011273.1810000
0.125140.009692.779000
0.15150.009272.528700
0.175160.009412.804000
DownLoad: CSV
[1]
Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281, 951 doi: 10.1126/science.281.5379.951
[2]
Dietl T, Ohno H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev Mod Phys, 2014, 86, 187 doi: 10.1103/RevModPhys.86.187
[3]
Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater, 2010, 9, 965 doi: 10.1038/nmat2898
[4]
Dietl T, Bonanni A, Ohno H. Families of magnetic semiconductors — an overview. J Semiconduct, 2019, 40, 080301 doi: 10.1088/1674-4926/40/8/080301
[5]
Gu Y L, Guo S L, Ning F L. Progress on microscopic properties of diluted magnetic semiconductors by NMR and μSR. J Semicond, 2019, 40, 081506 doi: 10.1088/1674-4926/40/8/081506
[6]
Zhao G Q, Deng Z, Jin C Q. Advances in new generation diluted magnetic semiconductors with independent spin and charge doping. J Semicond, 2019, 40, 081505 doi: 10.1088/1674-4926/40/8/081505
[7]
Munekata H, Ohno H, von Molnar S, et al. Diluted magnetic III-V semiconductors. Phys Rev Lett, 1989, 63, 1849 doi: 10.1103/PhysRevLett.63.1849
[8]
Wang M, Campion R P, Rushforth A W, et al. Achieving high curie temperature in (Ga, Mn)As. Appl Phys Lett, 2008, 93, 132103 doi: 10.1063/1.2992200
[9]
Chen L, Yang X, Yang F H, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584 doi: 10.1021/nl201187m
[10]
Ferrand D, Cibert J, Bourgognon C, et al. Carrier-induced ferromagnetic interactions in p-doped Zn1− xMnxTe epilayers. J Cryst Growth, 2000, 214/215, 387 doi: 10.1016/S0022-0248(00)00114-7
[11]
Haury A, Wasiela A, Arnoult A, et al. Observation of a ferromagnetic transition induced by two-dimensional hole gas in modulation-doped CdMnTe quantum wells. Phys Rev Lett, 1997, 79, 511 doi: 10.1103/PhysRevLett.79.511
[12]
Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287, 1019 doi: 10.1126/science.287.5455.1019
[13]
Dietl T, Ohno H, Matsukura F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys Rev B, 2001, 63, 195205 doi: 10.1103/PhysRevB.63.195205
[14]
Reed M L, El-Masry N A, Stadelmaier H H, et al. Room temperature ferromagnetic properties of (Ga, Mn)N. Appl Phys Lett, 2001, 79, 3473 doi: 10.1063/1.1419231
[15]
Guo S L, Ning F L. Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors. Chin Phys B, 2018, 27, 097502 doi: 10.1088/1674-1056/27/9/097502
[16]
Deng Z, Jin C Q, Liu Q Q, et al. Li(Zn,Mn)As as a new generation ferromagnet based on a 1-2-5 semiconductor. Nat Commun, 2011, 2, 1 doi: 10.1038/ncomms1425
[17]
Ding C, Man H Y, Qin C, et al. (La1- xBax)(Zn1- xMnx)AsO: A two dimensional “1111” diluted magnetic semiconductor in bulk form. Phys Rev B, 2013, 88, 041102 doi: 10.1103/PhysRevB.88.041102
[18]
Masek J, Kudrnovský J, MȢca F, et al. Dilute moment n-type ferromagnetic semiconductor Li(Zn, Mn)As. Phys Rev Lett, 2007, 98, 067202 doi: 10.1103/PhysRevLett.98.067202
[19]
Wang X C, Liu Q Q, Lv Y X, et al. The superconductivity at 18 K in LiFeAs system. Solid State Commun, 2008, 148, 538 doi: 10.1016/j.ssc.2008.09.057
[20]
Zhao K, Deng Z, Wang X C, et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the n122o iron-based superconductors. Nat Commun, 2013, 4, 1442 doi: 10.1038/ncomms2447
[21]
Zhao K, Chen B J, Zhao G Q, et al. Ferromagnetism at 230 K in (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 diluted magnetic semiconductor. Chin Sci Bull, 2014, 59, 2524 doi: 10.1007/s11434-014-0398-z
[22]
Dunsiger S R, Carlo J P, Goko T, et al. Spatially homogeneous ferromagnetism of (Ga, Mn)As. Nat Mater, 2010, 9, 299 doi: 10.1038/nmat2715
[23]
Yang X J, Li Y K, Shen C Y, et al. Sr and Mn co-doped LaCuSO: A wide band gap oxide diluted magnetic semiconductor with TC around 200 K. Appl Phys Lett, 2013, 103, 022410 doi: 10.1063/1.4813540
[24]
Agulyansky A. Main principals of the chemistry of tantalum and niobium fluoride compounds. Elsevier, 2004
[25]
Toby B H, Von Dreele R B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr, 2013, 46, 544 doi: 10.1107/S0021889813003531
[26]
Johnson V, Jeitschko W. ZrCuSiAs: A “filled” PbFCl type. J Solid State Chem, 1974, 11, 161 doi: 10.1016/0022-4596(74)90111-X
[27]
Kamihara Y, Watanabe T, Hirano M, et al. Iron-based layered superconductor La[O1– xF x] FeAs (x = 0.05–0.12) with Tc = 26 K. J Am Chem Soc, 2008, 130, 3296 doi: 10.1021/ja800073m
[28]
Kabbour H, Cario L, Boucher F. Rational design of new inorganic compounds with the ZrSiCuAs structure type using 2D building blocks. J Mater Chem, 2005, 15, 3525 doi: 10.1039/b506031a
[29]
Fu L C, Gu Y L, Guo S L, et al. Ferromagnetism in fluoride-antimonide SrF(Zn1–2 xMnxCux)Sb with a quasi two dimensional structure . J Magn Magn Mater, 2019, 483, 95 doi: 10.1016/j.jmmm.2019.03.091
[30]
Dho J, Kim W S, Hur N H. Reentrant spin glass behavior in Cr-doped perovskite manganite. Phys Rev Lett, 2002, 89, 027202 doi: 10.1103/PhysRevLett.89.027202
[31]
Zhang H J, Zhang R F, Fu L C, et al. (La1− xSrx)(Zn1− xMnx)SbO: A novel 1111-type diluted magnetic semiconductor. Acta Physica Sinica, 2021, 70, 107501 doi: 10.7498/aps.70.20201966
[32]
Gu Y L, Zhang H J, Zhang R F, et al. A novel diluted magnetic semiconductor (Ca, Na)(Zn, Mn)2Sb2 with decoupled charge and spin doping. Chin Phys B, 2020, 29, 057507 doi: 10.1088/1674-1056/ab892e
[33]
Fu L C, Gu Y L, Zhi G X, et al. Drastic improvement of Curie temperature by chemical pressure in N-type diluted magnetic semiconductor Ba(Zn, Co)2As2. Sci Rep, 2021, 11, 7652 doi: 10.1038/s41598-021-86205-2
[34]
Chen B J, Deng Z, Li W M, et al. New fluoride-arsenide diluted magnetic semiconductor (Ba, K)F(Zn, Mn)As with independent spin and charge doping. Sci Rep, 2016, 6, 36578 doi: 10.1038/srep36578
[35]
Zhi G X, Guo S L, Zhang R F, et al. Cu2(Zn, Mn)(Sn, Al)Se4: A diluted magnetic semiconductor with decoupled charge and spin doping. J Magn Magn Mater, 2021, 536, 168064 doi: 10.1016/j.jmmm.2021.168064
[36]
Liu X F, Matsuishi S, Fujitsu S, et al. Spin-glass-like behavior of CaNi1−xMnxGe. Phys Rev B, 2011, 84, 214439 doi: 10.1103/PhysRevB.84.214439
[37]
Lekshmi P N, Raji G R, Vasundhara M. Re-entrant spin glass behaviour and magneto-dielectric effect in insulating Sm2NiMnO6 double perovskite. J Mater Chem C, 2013, 1, 6565 doi: 10.1039/c3tc31203h
[38]
Man H Y, Guo S L, Sui Y, et al. Ba(Zn1−2 xMnxCux)2As2: A bulk form diluted ferromagnetic semiconductor with Mn and Cu codoping at Zn sites. Sci Rep, 2015, 5, 15507 doi: 10.1038/srep15507
[39]
Yu S, Zhao G Q, Peng Y, et al. (Ba, K)(Zn, Mn)2Sb2: A new type of diluted magnetic semiconductor. Crystals, 2020, 10, 690 doi: 10.3390/cryst10080690
[40]
Binder K, Young A P. Spin glasses: Experimental facts, theoretical concepts, and open questions. Rev Mod Phys, 1986, 58, 801 doi: 10.1103/RevModPhys.58.801
[41]
Han W, Zhao K, Wang X C, et al. Diluted ferromagnetic semiconductor (LaCa)(ZnMn)SbO isostructural to “1111” type iron pnictide superconductors. Sci China Phys Mech Astron, 2013, 56, 2026 doi: 10.1007/s11433-013-5320-1
[42]
Jungwirth T, Sinova J, Mašek J, et al. Theory of ferromagnetic (III, Mn)V semiconductors. Rev Mod Phys, 2006, 78, 809 doi: 10.1103/RevModPhys.78.809
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 894 Times PDF downloads: 31 Times Cited by: 0 Times

    History

    Received: 02 June 2022 Revised: 16 July 2022 Online: Accepted Manuscript: 13 September 2022Uncorrected proof: 14 September 2022Published: 01 November 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xueqin Zhao, Jinou Dong, Licheng Fu, Yilun Gu, Rufei Zhang, Qiaolin Yang, Lingfeng Xie, Yinsong Tang, Fanlong Ning. (Ba1−xNax)F(Zn1−xMnx)Sb: A novel fluoride-antimonide magnetic semiconductor with decoupled charge and spin doping[J]. Journal of Semiconductors, 2022, 43(11): 112501. doi: 10.1088/1674-4926/43/11/112501 ****Xueqin Zhao, Jinou Dong, Licheng Fu, Yilun Gu, Rufei Zhang, Qiaolin Yang, Lingfeng Xie, Yinsong Tang, Fanlong Ning. 2022: (Ba1−xNax)F(Zn1−xMnx)Sb: A novel fluoride-antimonide magnetic semiconductor with decoupled charge and spin doping. Journal of Semiconductors, 43(11): 112501. doi: 10.1088/1674-4926/43/11/112501
      Citation:
      Xueqin Zhao, Jinou Dong, Licheng Fu, Yilun Gu, Rufei Zhang, Qiaolin Yang, Lingfeng Xie, Yinsong Tang, Fanlong Ning. (Ba1−xNax)F(Zn1−xMnx)Sb: A novel fluoride-antimonide magnetic semiconductor with decoupled charge and spin doping[J]. Journal of Semiconductors, 2022, 43(11): 112501. doi: 10.1088/1674-4926/43/11/112501 ****
      Xueqin Zhao, Jinou Dong, Licheng Fu, Yilun Gu, Rufei Zhang, Qiaolin Yang, Lingfeng Xie, Yinsong Tang, Fanlong Ning. 2022: (Ba1−xNax)F(Zn1−xMnx)Sb: A novel fluoride-antimonide magnetic semiconductor with decoupled charge and spin doping. Journal of Semiconductors, 43(11): 112501. doi: 10.1088/1674-4926/43/11/112501

      (Ba1−xNax)F(Zn1−xMnx)Sb: A novel fluoride-antimonide magnetic semiconductor with decoupled charge and spin doping

      DOI: 10.1088/1674-4926/43/11/112501
      More Information
      • Xueqin Zhao:is a PhD candidate in the Department of Physics in Zhejiang University, and works on the synthesis and characterization of novel bulk diluted magnetic semiconductors
      • Fanlong Ning:works on the synthesis and microscopic characterization of unconventional superconductors and novel magnetic semiconductors
      • Corresponding author: ningfl@zju.edu.cn
      • Received Date: 2022-06-02
      • Revised Date: 2022-07-16
      • Available Online: 2022-09-13

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return