Citation: |
Xiyan Pan, Liming Ding. Application of metal halide perovskite photodetectors[J]. Journal of Semiconductors, 2022, 43(2): 020203. doi: 10.1088/1674-4926/43/2/020203
****
X Y Pan, L M Ding, Application of metal halide perovskite photodetectors[J]. J. Semicond., 2022, 43(2): 020203. doi: 10.1088/1674-4926/43/2/020203.
|
Application of metal halide perovskite photodetectors
DOI: 10.1088/1674-4926/43/2/020203
More Information
-
References
[1] Kumawat N K, Tress W, Gao F. Mobile ions determine the luminescence yield of perovskite light-emitting diodes under pulsed operation. Nat Commun, 2021, 12, 4899 doi: 10.1038/s41467-021-25016-5[2] Jung E H, Jeon N J, Park E Y, et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567, 511 doi: 10.1038/s41586-019-1036-3[3] Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354, 206 doi: 10.1126/science.aah5557[4] Jeon Y J, Lee S, Kang R, Kim J E, et al. Planar heterojunction perovskite solar cells with superior reproducibility. Sci Rep, 2014, 4, 6953 doi: 10.1038/srep06953[5] Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499, 316 doi: 10.1038/nature12340[6] Liu X K, Xu W, Bai S, et al. Metal halide perovskites for light-emitting diodes. Nat Mater, 2021, 20, 10 doi: 10.1038/s41563-020-0784-7[7] Dou L, Yang Y, You J, et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun, 2014, 5, 5404 doi: 10.1038/ncomms6404[8] Saidaminov M, Haque M, Savoie M, et al. Perovskite photodetectors operating in both narrowband and broadband regimes. Adv Mater, 2016, 28, 8144 doi: 10.1002/adma.201601235[9] Yamada Y, Nakamura T, Endo M, et al. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J Am Chem Soc, 2014, 13611610 doi: 10.1021/ja506624n[10] Gruber G J, Moses W W, Derenzo S E, et al. A discrete scintillation camera module using silicon photodiode readout of CsI(TI) crystals for breast cancer imaging. IEEE Tran Nucl Sci, 1998, 45, 1063 doi: 10.1109/23.681979[11] Haddadi A, Dehzangi A, Adhikary S, et al. Background –limited long wavelength infrared InAs/InAs1 – xSb x type-II superlattice-based photodetectors operating at 110 K. APL Mater, 2017, 5, 35502 doi: 10.1063/1.4975619[12] Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett, 2013, 13, 1764 doi: 10.1021/nl400349b[13] Chen S, Lou Z, Chen D, et al. An artificial flexible visual memory system based on an UV-motivated memristor. Adv Mater, 2018, 30, 1705400 doi: 10.1002/adma.201705400[14] Geng X, Wang F, Tian H, et al. Ultrafast photodetector by integrating perovskite directly on silicon wafer. ACS Nano, 2020, 14, 2860 doi: 10.1021/acsnano.9b06345[15] Liu Y, Zhang Y, Zhao K, et al. A 1300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals. Adv Mater, 2018, 30, 1707314 doi: 10.1002/adma.201707314[16] Song X, Li Q, Han J, et al. Highly luminescent metal-free perovskite single crystal for biocompatible X-ray detector to attain highest sensitivity. Adv Mater, 2021, 2, 2102190 doi: 10.1002/adma.202102190[17] Pan X, Zhang J, Liu R, Zhou H, et al. Single-layer ZnO hollow hemispheres enable high-performance self-powered perovskite photodetector for optical communication. Nano-Micro Lett, 2021, 13, 70 doi: 10.1007/s40820-021-00596-5[18] Wu T, Chi Y, Wang H, et al. Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s. Sci Rep, 2017, 7, 11 doi: 10.1038/s41598-017-00052-8[19] Gong C S, Lee Y C, Lai J L, et al. The high-efficiency LED driver for visible light communication applications. Sci Rep, 2016, 6, 30991 doi: 10.1038/srep30991[20] Chi Y C, Huang Y F, Wu T C, et al. Violet laser diode enables lighting communication. Sci Rep, 2017, 7, 10469 doi: 10.1038/s41598-017-11186-0[21] Amirabadi M A, Nezamalhosseni, et al. Low complexity deep learning algorithms for compensating atmospheric turbulence in the free space optical communication system. IET Opotelectron, 2021, 1, 13 doi: 10.1049/ote2.12060[22] Bao C, Yang J, Bai S, et al. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv Mater, 2018, 30, 1803422 doi: 10.1002/adma.201803422[23] Tsai W L, Chen C Y, Wen Y T, et al. Band tunable microcavity perovskite artificial human photoreceptors. Adv Mater, 2019, 31, 1900231 doi: 10.1002/adma.201900231[24] Gu L, Poddar S, Lin Y, Long Z, et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature, 2020, 581, 278 doi: 10.1038/s41586-020-2285-x[25] Xu X, Chen J, Cai S, et al. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv Mater, 2018, 30, 1803165 doi: 10.1002/adma.201803165[26] Lei Y, Chen Y, Zhang R, et al. A fabrication process for flexible single-crystal perovskite devices. Nature, 2020, 583, 7818 doi: 10.1038/s41586-020-2526-z[27] Wu D, Zhou H, Song Z, et al. Welding perovskite nanowires for stable, sensitive, flexible photodetectors. ACS Nano, 2020, 14, 2777 doi: 10.1021/acsnano.9b09315[28] Zhou H, Song Z, Grice C R, et al. Self-powered CsPbBr3 nanowire photodetector with a vertical structure. Nano Energy, 2018, 53, 880 doi: 10.1016/j.nanoen.2018.09.040[29] Tian W, Min L, Cao F, Li L. Nested inverse opal perovskite toward superior flexible and self-powered photodetection performance. Adv Mater, 2020, 32, 1906974 doi: 10.1002/adma.201906974 -
Proportional views