J. Semicond. > 2022, Volume 43 > Issue 3 > 030202

RESEARCH HIGHLIGHTS

The origin and evolution of Y6 structure

Jiamin Cao1, , Lifei Yi1 and Liming Ding2,

+ Author Affiliations

 Corresponding author: Jiamin Cao, jiamincao@hnust.edu.cn; Liming Ding, ding@nanoctr.cn

DOI: 10.1088/1674-4926/43/3/030202

PDF

Turn off MathJax

During last several years, electron acceptors for organic solar cells (OSCs) have experienced three major innovations. The first invention was a fused-ring electron acceptor (FREA), ITIC, reported by Zhan et al. in 2015, which consists of an indacenodithienothiophene (IDTT) donor core and two 3-dicyanomethylene-1-indanone (IC) as the end-groups[1]. ITIC cells exhibited comparable performance to PC61BM cells, and inspired the development of hundreds nonfullerene acceptors (NFAs). The second breakthrough is the 14.08% power conversion efficiency (PCE) delivered by a low-bandgap nonfullerene acceptor COi8DFIC with strong NIR absorption, invented by Ding et al.[2, 3]. The third star acceptor is Y6, developed by Zou et al. in 2019[4]. Y6 and its derivatives (Y-series NFAs) are very promising[5, 6]. Ding et al. developed polymer donor D18 and its outstanding derivatives[7-10], and the D18:Y6 cells gave a PCE of 18.22%[7], which was the first time for OSCs to deliver PCEs over 18%.

The core of Y6, dithienothiophen[3,2-b]pyrrolobenzothiadiazole, was derived from unit DTPBT (Fig. 1), which was reported by Cheng et al. in 2011[11, 12]. This ladder-type unit fuses central electron-deficient benzothiadiazole (BT) and two electron-rich thiophenes by two pyrroles, and it endows its copolymers with strong intermolecular π–π interaction, enhanced light absorption, and decent photovoltaic performance[12]. Zou et al. developed ladder-type unit dithieno[3,2-b]pyrrolobenzotriazole (BZTP) and used it as the core of acceptor BZIC[13]. BZIC presented broad absorption with a low optical bandgap of 1.45 eV, high lowest unoccupied molecular orbital (LUMO) energy level, and strong π–π interactions, and HFQx-T:BZIC cells gave a PCE of 6.30%. Then, acceptor Y1 was synthesized by replacing two thiophenes of BZIC’s core with thieno[3,2-b]thiophenes[14]. With octacyclic dithienothiophen[3,2-b]pyrrolobenzotriazole as the D-A-D core, Y1 exhibited a red-shifted absorption, a low voltage loss of 0.57 V and a short-circuit current density (Jsc) of 22.44 mA/cm2, yielding a PCE of 13.42%. Zou et al. changed benzotriazole unit of Y1 to benzothiadiazole for higher charge transport, and grafted alkyl chains at the terminals of the D-A-D core, producing Y5[15]. PBDB-T:Y5 cells offered a PCE of 14.1%. Derivated from Y5, Y6 was obtained by modifying the alkyl chains on thieno[3,2-b]thiophenes, and fluorinating the terminals[4, 16]. Y6 employs an A-DA′D-A molecular configuration with ladder-type core, fusing an electron-deficient BT in the middle. Y6 possesses enhanced intermolecular and intramolecular interactions for good electron mobility. As a strong electron-donating unit, N-alkyl pyrroles not only upshifted the highest occupied molecular orbital (HOMO) energy level to reduce the bandgap[17], but also suppressed over-aggregation and enhanced solubility[18]. The alkyl chains on both sides of DA′D core can help to lock conformation to enhance the order of molecular stacking[19]. Y6 cells exhibited high photocurrent, less non-radiative recombination and reduced voltage losses, giving a PCE of 15.7%[4, 20]. More Y6 derivatives were developed in a short time, pushing the PCE to 19%[6].

Figure  1.  The origin and evolution of Y6 structure.

Y-series NFAs present universal compatibility and excellent photovoltaic performance. First, they always exhibit pretty high PCEs when combining with many polymer donors, even some of them were designed to match fullerene acceptors or ITIC derivatives[5]. Second, they have been used in almost all high-performance OSCs, ternary or all-small-molecule devices (SM-OSCs)[21, 22]. Some efficient polymer acceptors were developed by polymerizing Y-series NFAs, and over 17% PCEs from these all-polymer solar cells (all-PSCs) were delivered[23-25].

In summary, to enhance PCE further, the electron mobilities for Y-series NFAs need to be improved, and the energy loss needs to be minimized. We should understand well the relationship between molecular structures and non-radiative recombination[26]. To pave the road to commercialization, more efforts should be put into molecular design to invent more high-performance acceptors and donors.

J. Cao thanks the National Natural Science Foundation of China (21604021), Hunan Provincial Natural Science Foundation (2018JJ3141) and the Innovation Team of Huxiang High-level Talent Gathering Engineering (2021RC5028). L. Ding thanks the National Key Research and Development Program of China (2017YFA0206600) and the National Natural Science Foundation of China (51773045, 21772030, 51922032, 21961160720) for financial support.



[1]
Lin Y, Wang J, Zhang Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater, 2015, 27, 1170 doi: 10.1002/adma.201404317
[2]
Xiao Z, Jia X, Li D, et al. 26 mA cm–2 Jsc from organic solar cells with a low-bandgap nonfullerene acceptor. Sci Bull, 2017, 62, 1494 doi: 10.1016/j.scib.2017.10.017
[3]
Xiao Z, Jia X, Ding L, et al. Ternary organic solar cells offer 14% power conversion efficiency. Sci Bull, 2017, 62, 1562 doi: 10.1016/j.scib.2017.11.003
[4]
Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3, 1140 doi: 10.1016/j.joule.2019.01.004
[5]
Li S, Li C Z, Shi M, et al. New phase for organic solar cell research: emergence of Y-series electron acceptors and their perspectives. ACS Energy Lett, 2020, 5, 1554 doi: 10.1021/acsenergylett.0c00537
[6]
Cui Y, Xu Y, Yao H, et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv Mater, 2021, 33, 2102420 doi: 10.1002/adma.202102420
[7]
Liu Q, Jiang Y, Jin K, et al. 18% Efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[8]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[9]
Jin K, Xiao Z, Ding L. 18.69% PCE from organic solar cells. J Semicond, 2021, 42, 060502 doi: 10.1088/1674-4926/42/6/060502
[10]
Meng X, Jin K, Xiao Z, et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J Semicond, 2021, 42, 100501 doi: 10.1088/1674-4926/42/10/100501
[11]
Cheng Y J, Chen C H, Ho Y J, et al. Thieno[3, 2-b]pyrrolo donor fused with benzothiadiazolo, benzoselenadiazolo and quinoxalino acceptors: synthesis, characterization, and molecular properties. Org Lett, 2011, 13, 5484 doi: 10.1021/ol202199v
[12]
Cheng Y J, Ho Y J, Chen C H, et al. Synthesis, photophysical and photovoltaic properties of conjugated polymers containing fused donor-acceptor dithienopyrrolobenzothiadiazole and dithienopyrroloquinoxaline arenes. Macromolecules, 2012, 45, 2690 doi: 10.1021/ma202764v
[13]
Feng L, Yuan J, Zhang Z, et al. Thieno[3, 2-b]pyrrolo-fused pentacyclic benzotriazole-based acceptor for efficient organic photovoltaics. ACS Appl Mater Interfaces, 2017, 9, 31985 doi: 10.1021/acsami.7b10995
[14]
Yuan J, Huang T, Cheng P, et al. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nat Commun, 2019, 10, 570 doi: 10.1038/s41467-019-08386-9
[15]
Yuan J, Zhang Y, Zhou L, et al. Fused benzothiadiazole: a building block for n-type organic acceptor to achieve high-performance organic solar cells. Adv Mater, 2019, 31, 1807577 doi: 10.1002/adma.201807577
[16]
Wei Q, Liu W, Leclerc M, et al. A-DA′D-A non-fullerene acceptors for high-performance organic solar cells. Sci China Chem, 2020, 63, 1352 doi: 10.1007/s11426-020-9799-4
[17]
Xie L, Zhang Y, Zhuang W, et al. Low-bandgap nonfullerene acceptor based on thieno[3, 2-b]indole core for highly efficient binary and ternary organic solar cells. Chem Eng J, 2022, 427, 131674 doi: 10.1016/j.cej.2021.131674
[18]
Duan C, Ding L. The new era for organic solar cells: non-fullerene small molecular acceptors. Sci Bull, 2020, 65, 1231 doi: 10.1016/j.scib.2020.04.030
[19]
Yuan J, Zhang C, Chen H, et al. Understanding energetic disorder in electron-deficient-core-based non-fullerene solar cells. Sci China Chem, 2020, 63, 1159 doi: 10.1007/s11426-020-9747-9
[20]
Liu S, Yuan J, Deng W, et al. High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nat Photonics, 2020, 14, 300 doi: 10.1038/s41566-019-0573-5
[21]
Qin J, Chen Z, Bi P, et al. 17% efficiency all-small-molecule organic solar cells enabled by nanoscale phase separation with a hierarchical branched structure. Energy Environ Sci, 2021, 14, 5903 doi: 10.1039/d1ee02124a
[22]
Jin K, Xiao Z, Ding L. D18, an eximious solar polymer. J Semicond, 2021, 42, 010502 doi: 10.1088/1674-4926/42/3/010502
[23]
Ji X, Xiao Z, Sun H, et al. Polymer acceptors for all-polymer solar cells. J Semicond, 2021, 42, 080202 doi: 10.1088/1674-4926/42/8/080202
[24]
Sun R, Wang W, Yu H, et al. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule, 2021, 5, 1548 doi: 10.1016/j.joule.2021.04.007
[25]
Fan Q, Xiao Z, Wang E, et al. Polymer acceptors based on Y6 derivatives for all-polymer solar cells. Sci Bull, 2021, 66, 1950 doi: 10.1016/j.scib.2021.07.002
[26]
Yuan J, Zhang H, Zhang R, et al. Reducing voltage losses in the A-DA′D-A acceptor-based organic solar cells. Chem, 2020, 6, 2147 doi: 10.1016/j.chempr.2020.08.003
Fig. 1.  The origin and evolution of Y6 structure.

[1]
Lin Y, Wang J, Zhang Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater, 2015, 27, 1170 doi: 10.1002/adma.201404317
[2]
Xiao Z, Jia X, Li D, et al. 26 mA cm–2 Jsc from organic solar cells with a low-bandgap nonfullerene acceptor. Sci Bull, 2017, 62, 1494 doi: 10.1016/j.scib.2017.10.017
[3]
Xiao Z, Jia X, Ding L, et al. Ternary organic solar cells offer 14% power conversion efficiency. Sci Bull, 2017, 62, 1562 doi: 10.1016/j.scib.2017.11.003
[4]
Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3, 1140 doi: 10.1016/j.joule.2019.01.004
[5]
Li S, Li C Z, Shi M, et al. New phase for organic solar cell research: emergence of Y-series electron acceptors and their perspectives. ACS Energy Lett, 2020, 5, 1554 doi: 10.1021/acsenergylett.0c00537
[6]
Cui Y, Xu Y, Yao H, et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv Mater, 2021, 33, 2102420 doi: 10.1002/adma.202102420
[7]
Liu Q, Jiang Y, Jin K, et al. 18% Efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[8]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[9]
Jin K, Xiao Z, Ding L. 18.69% PCE from organic solar cells. J Semicond, 2021, 42, 060502 doi: 10.1088/1674-4926/42/6/060502
[10]
Meng X, Jin K, Xiao Z, et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J Semicond, 2021, 42, 100501 doi: 10.1088/1674-4926/42/10/100501
[11]
Cheng Y J, Chen C H, Ho Y J, et al. Thieno[3, 2-b]pyrrolo donor fused with benzothiadiazolo, benzoselenadiazolo and quinoxalino acceptors: synthesis, characterization, and molecular properties. Org Lett, 2011, 13, 5484 doi: 10.1021/ol202199v
[12]
Cheng Y J, Ho Y J, Chen C H, et al. Synthesis, photophysical and photovoltaic properties of conjugated polymers containing fused donor-acceptor dithienopyrrolobenzothiadiazole and dithienopyrroloquinoxaline arenes. Macromolecules, 2012, 45, 2690 doi: 10.1021/ma202764v
[13]
Feng L, Yuan J, Zhang Z, et al. Thieno[3, 2-b]pyrrolo-fused pentacyclic benzotriazole-based acceptor for efficient organic photovoltaics. ACS Appl Mater Interfaces, 2017, 9, 31985 doi: 10.1021/acsami.7b10995
[14]
Yuan J, Huang T, Cheng P, et al. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nat Commun, 2019, 10, 570 doi: 10.1038/s41467-019-08386-9
[15]
Yuan J, Zhang Y, Zhou L, et al. Fused benzothiadiazole: a building block for n-type organic acceptor to achieve high-performance organic solar cells. Adv Mater, 2019, 31, 1807577 doi: 10.1002/adma.201807577
[16]
Wei Q, Liu W, Leclerc M, et al. A-DA′D-A non-fullerene acceptors for high-performance organic solar cells. Sci China Chem, 2020, 63, 1352 doi: 10.1007/s11426-020-9799-4
[17]
Xie L, Zhang Y, Zhuang W, et al. Low-bandgap nonfullerene acceptor based on thieno[3, 2-b]indole core for highly efficient binary and ternary organic solar cells. Chem Eng J, 2022, 427, 131674 doi: 10.1016/j.cej.2021.131674
[18]
Duan C, Ding L. The new era for organic solar cells: non-fullerene small molecular acceptors. Sci Bull, 2020, 65, 1231 doi: 10.1016/j.scib.2020.04.030
[19]
Yuan J, Zhang C, Chen H, et al. Understanding energetic disorder in electron-deficient-core-based non-fullerene solar cells. Sci China Chem, 2020, 63, 1159 doi: 10.1007/s11426-020-9747-9
[20]
Liu S, Yuan J, Deng W, et al. High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nat Photonics, 2020, 14, 300 doi: 10.1038/s41566-019-0573-5
[21]
Qin J, Chen Z, Bi P, et al. 17% efficiency all-small-molecule organic solar cells enabled by nanoscale phase separation with a hierarchical branched structure. Energy Environ Sci, 2021, 14, 5903 doi: 10.1039/d1ee02124a
[22]
Jin K, Xiao Z, Ding L. D18, an eximious solar polymer. J Semicond, 2021, 42, 010502 doi: 10.1088/1674-4926/42/3/010502
[23]
Ji X, Xiao Z, Sun H, et al. Polymer acceptors for all-polymer solar cells. J Semicond, 2021, 42, 080202 doi: 10.1088/1674-4926/42/8/080202
[24]
Sun R, Wang W, Yu H, et al. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule, 2021, 5, 1548 doi: 10.1016/j.joule.2021.04.007
[25]
Fan Q, Xiao Z, Wang E, et al. Polymer acceptors based on Y6 derivatives for all-polymer solar cells. Sci Bull, 2021, 66, 1950 doi: 10.1016/j.scib.2021.07.002
[26]
Yuan J, Zhang H, Zhang R, et al. Reducing voltage losses in the A-DA′D-A acceptor-based organic solar cells. Chem, 2020, 6, 2147 doi: 10.1016/j.chempr.2020.08.003
1

Colloidal synthesis of lead chalcogenide/lead chalcohalide core/shell nanostructures and structural evolution

Yang Liu, Kunyuan Lu, Yujie Zhu, Xudong Hu, Yusheng Li, et al.

Journal of Semiconductors, 2025, 46(4): 042101. doi: 10.1088/1674-4926/24050026

2

Tunable crystal structure of Cu–Zn–Sn–S nanocrystals for improving photocatalytic hydrogen evolution enabled by copper element regulation

Zhe Yin, Min Hu, Jun Liu, Hao Fu, Zhijie Wang, et al.

Journal of Semiconductors, 2022, 43(3): 032701. doi: 10.1088/1674-4926/43/3/032701

3

Study of the morphology evolution of AlN grown on nano-patterned sapphire substrate

Zhuohui Wu, Jianchang Yan, Yanan Guo, Liang Zhang, Yi Lu, et al.

Journal of Semiconductors, 2019, 40(12): 122803. doi: 10.1088/1674-4926/40/12/122803

4

Design of a C-band polarization rotator-splitter based on a mode-evolution structure and an asymmetric directional coupler

Chen Yuan, Jincheng Dai, Hao Jia, Jianfeng Ding, Lei Zhang, et al.

Journal of Semiconductors, 2018, 39(12): 124008. doi: 10.1088/1674-4926/39/12/124008

5

Controlling morphology evolution of AlN nanostructures: influence of growth conditions in physical vapor transport

Lei Jin, Hongjuan Cheng, Jianli Chen, Song Zhang, Yongkuan Xu, et al.

Journal of Semiconductors, 2018, 39(7): 073001. doi: 10.1088/1674-4926/39/7/073001

6

6T SRAM cell analysis for DRV and read stability

Ruchi, S.Dasgupta

Journal of Semiconductors, 2017, 38(2): 025001. doi: 10.1088/1674-4926/38/2/025001

7

Steady-state solution growth of microcrystalline silicon on nanocrystalline seed layers on glass

R. Bansen, C. Ehlers, Th. Teubner, T. Boeck

Journal of Semiconductors, 2016, 37(9): 093001. doi: 10.1088/1674-4926/37/9/093001

8

Photoconductivity and surface chemical analysis of ZnO thin films deposited by solution-processing techniques for nano and microstructure fabrication

V.K. Dwivedi, P. Srivastava, G. Vijaya Prakash

Journal of Semiconductors, 2013, 34(3): 033001. doi: 10.1088/1674-4926/34/3/033001

9

A 2-GS/s 6-bit self-calibrated flash ADC

Zhang Youtao, Li Xiaopeng, Zhang Min, Liu Ao, Chen Chen, et al.

Journal of Semiconductors, 2010, 31(9): 095013. doi: 10.1088/1674-4926/31/9/095013

10

Origin of varistor properties of tungsten trioxide (WO3) ceramics

Zhao Hongwang, Hua Zhongqiu, Li Tongye, Wang Yu, Zhao Yong, et al.

Journal of Semiconductors, 2010, 31(2): 023001. doi: 10.1088/1674-4926/31/2/023001

11

A high precision programmable bandgap voltage reference design for high resolution ADC

Zhu Tiancheng, Yao Suying, Li Binqiao

Journal of Semiconductors, 2009, 30(7): 075005. doi: 10.1088/1674-4926/30/7/075005

12

The Microstructure Evolution of Intrinsic Microcrystalline Silicon Films and Its Influence on the Photovoltaic Performance of Thin-Film Silicon Solar Cells

Yuan Yujie, Hou Guofu, Zhang Jianjun, Xue Junming, Zhao Ying, et al.

Journal of Semiconductors, 2008, 29(11): 2125-2129.

13

Growth of Vanadium Doped Semi-Insulating 6H-SiC

Ning Lina, Hu Xiaobo, Chen Xiufang, Li Juan, Wang Yingmin, et al.

Chinese Journal of Semiconductors , 2007, 28(S1): 221-224.

14

An AND-LUT Based Hybrid FPGA Architecture

Chen Liguang, Lai Jinmei, Tong Jiarong

Chinese Journal of Semiconductors , 2007, 28(3): 398-403.

15

Resonant Raman Scattering and Photoluminescence Emissions from Above Bandgap Levels in Dilute GaAsN Alloys

Tan P H, Luo X D, Ge W K, Xu Z Y, Zhang Y, et al.

Chinese Journal of Semiconductors , 2006, 27(3): 397-402.

16

Photoluminescence of Electron- and Neutron-Irradiated n-Type 6H-SiC

Zhong Zhiqin, Gong Min, Wang Ou, Yu Zhou, Yang Zhimei, et al.

Chinese Journal of Semiconductors , 2006, 27(S1): 11-14.

17

Design of Silicon Spiral Inductors Used for 5~6GHz Wireless LAN

Sun Longjie, Yang Bo, Guo Lihui

Chinese Journal of Semiconductors , 2006, 27(5): 892-895.

18

Evolution of Micro-Structures on PbSe Buffer Layer and Self-Organization of PbTe QDs

Xu Tianning, Wu Huizhen, Si Jianxiao, Cao Chunfang, Qiu Dongjiang, et al.

Chinese Journal of Semiconductors , 2006, 27(S1): 87-91.

19

Temporal Floorplanning Using Solution Space Smoothing Based on 3D-BSSG Structure

Chinese Journal of Semiconductors , 2005, 26(10): 1916-1924.

20

Calculati用6×6Luttinger-Kohn模型和平面波展开方法计算应变量子阱材料的价带结构(英文)

Chinese Journal of Semiconductors , 2002, 23(6): 577-581.

1. Zhang, Z., Lin, Q., Xie, L. et al. Hybrid nonfullerene acceptors based on thieno[2′, 3′:4, 5]thieno[3, 2-b]indole for efficient organic solar cells. Synthetic Metals, 2025. doi:10.1016/j.synthmet.2024.117785
2. Zhu, J., Tang, A., Tang, L. et al. Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233. doi:10.1016/j.cclet.2024.110233
3. Xu, Z., Cao, X., Yao, Z. et al. Highly Efficient Acceptors with a Nonaromatic Thianthrene Central Core for Organic Photovoltaics. Angewandte Chemie - International Edition, 2025. doi:10.1002/anie.202421289
4. Yamada, K., Suzuki, W., Kubota, M. et al. Effects of non-fused and fused substituents in quinoxaline-based central units on conformation, aggregation, and photovoltaic properties of non-fused ring electron acceptors. Journal of Materials Chemistry C, 2025. doi:10.1039/d5tc00204d
5. Feng, E.-M., Zhang, C.-J., Han, Y.-F. et al. High-speed doctor-blading PM6:L8-BO organic solar cells from non-halogenated green solvent with a module efficiency of 16.07% | [快速刮涂实现效率16.07%非卤绿色溶剂PM6: L8-BO有机太阳能电池组件]. Journal of Central South University, 2024, 31(12): 4297-4306. doi:10.1007/s11771-024-5718-0
6. Jia, X., Li, Y., Cao, X. et al. Delicate Regulation of Central Substituents Boosts Organic Photovoltaic Performance of Dimeric Acceptors. Small, 2024, 20(48): 2405925. doi:10.1002/smll.202405925
7. Zhao, Y., Wu, J., Li, W. et al. Morphology Control Realizes Fast Charge Dissociation and Transport in High-Performance All-Polymer Solar Cells. ACS Applied Energy Materials, 2024, 7(9): 4180-4189. doi:10.1021/acsaem.4c00534
8. Feng, E., Zhang, C., Chang, J. et al. Organic solar cells with D18 or derivatives offer efficiency over 19%. Journal of Semiconductors, 2024, 45(5): 050201. doi:10.1088/1674-4926/45/5/050201
9. Ma, K., Liang, H., Wang, Y. et al. A case study of comparing two dimerized acceptor molecules built by different branch-connected and terminal-connected approaches. Science China Chemistry, 2024, 67(5): 1687-1696. doi:10.1007/s11426-023-1923-4
10. Li, Q., Yue, S., Huang, Z. et al. Dissociation of singlet excitons dominates photocurrent improvement in high-efficiency non-fullerene organic solar cells. Nano Research Energy, 2024, 3(1): e9120099. doi:10.26599/NRE.2023.9120099
11. Xie, C., Zhang, B., Lv, M. et al. Engineering fibrillar morphology for highly efficient organic solar cells. Journal of Semiconductors, 2024, 45(2): 020202. doi:10.1088/1674-4926/45/2/020202
12. You, D., Yang, T., Tao, Y. et al. Green solvent-processed organic solar cells based on a small-molecule Ir(iii) complex as electron donor materials. Journal of Materials Chemistry C, 2024, 12(8): 2730-2737. doi:10.1039/d3tc03287f
13. Wu, Z., Yi, L., Meng, Y. et al. Non-fused nonfullerene acceptors based on thieno[2', 3':4, 5]thieno[3, 2-b]indole for efficient organic solar cells. Synthetic Metals, 2023. doi:10.1016/j.synthmet.2023.117454
14. Huang, Y., Si, X., Wang, R. et al. A polymer acceptor with grafted small molecule acceptor units for high-efficiency organic solar cells. Journal of Materials Chemistry A, 2023, 11(27): 14768-14775. doi:10.1039/d3ta02523c
15. Tian, H., Zhao, M., Ma, X. et al. Critical Progress of Polymer Solar Cells with a Power Conversion Efficiency over 18%. Energies, 2023, 16(11): 4494. doi:10.3390/en16114494
16. Zhang, Z., Xia, D., Xie, Q. et al. Stable Radical TEMPO Terminated Perylene Bisimide(PBI) Based Small Molecule as Cathode Interlayer for Efficient Organic Solar Cells. Chemical Research in Chinese Universities, 2023, 39(2): 213-218. doi:10.1007/s40242-023-2346-4
17. Ma, K., Liang, H., Wang, Y. et al. New Type of Polymerized Small A-D-A Acceptors Constructed by Conjugation Extension in the Branched Direction. ACS Materials Letters, 2023, 5(3): 884-892. doi:10.1021/acsmaterialslett.3c00045
18. Liang, S., Li, W., Ding, L. Single-component organic solar cells. Journal of Semiconductors, 2023, 44(3): 030201. doi:10.1088/1674-4926/44/3/030201
19. Sha, M.-Z., Pu, Y.-J., Yin, H. et al. Recent progress of indoor organic photovoltaics - From device performance to multifunctional applications. Organic Electronics, 2023. doi:10.1016/j.orgel.2022.106736
20. Zhang, J., Liu, L., Li, H. et al. Nonfullerene Acceptors Based on Naphthalene Substituted Thieno[3, 2-b]thiophene Core for Efficient Organic Solar Cells. Russian Journal of General Chemistry, 2022, 92(11): 2354-2362. doi:10.1134/S1070363222110202
21. Bai, S., Zhang, L., Lin, Q. et al. Organic photodetectors with non-fullerene acceptors. Journal of Semiconductors, 2022, 43(11): 110201. doi:10.1088/1674-4926/43/11/110201
22. Feng, E., Han, Y., Chang, J. et al. 26.75 cm2 organic solar modules demonstrate a certified efficiency of 14.34%. Journal of Semiconductors, 2022, 43(10): 100501. doi:10.1088/1674-4926/43/10/100501
23. Zhang, Y., Xiao, Z., Ding, L. et al. Singlet fission and its application in organic solar cells. Journal of Semiconductors, 2022, 43(8): 080201. doi:10.1088/1674-4926/43/8/080201
24. Zou, Y., Chen, H., Bi, X. et al. Peripheral halogenation engineering controls molecular stacking to enable highly efficient organic solar cells. Energy and Environmental Science, 2022, 15(8): 3519-3533. doi:10.1039/d2ee01340a
25. Cao, J., Nie, G., Zhang, L. et al. Star polymer donors. Journal of Semiconductors, 2022, 43(7): 070201. doi:10.1088/1674-4926/43/7/070201
26. Li, M., Wang, J., Ding, L. et al. Large-area organic solar cells. Journal of Semiconductors, 2022, 43(6): 060201. doi:10.1088/1674-4926/43/6/060201
27. Ji, Y., Bai, H., Zhang, L. et al. Nonfullerene acceptors based on perylene monoimides. Journal of Semiconductors, 2022, 43(5): 050203. doi:10.1088/1674-4926/43/5/050203
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1937 Times PDF downloads: 122 Times Cited by: 27 Times

    History

    Received: 02 November 2021 Revised: Online: Accepted Manuscript: 02 November 2021Uncorrected proof: 04 November 2021Published: 10 March 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jiamin Cao, Lifei Yi, Liming Ding. The origin and evolution of Y6 structure[J]. Journal of Semiconductors, 2022, 43(3): 030202. doi: 10.1088/1674-4926/43/3/030202 ****J M Cao, L F Yi, L M Ding, The origin and evolution of Y6 structure[J]. J. Semicond., 2022, 43(3): 030202. doi: 10.1088/1674-4926/43/3/030202.
      Citation:
      Jiamin Cao, Lifei Yi, Liming Ding. The origin and evolution of Y6 structure[J]. Journal of Semiconductors, 2022, 43(3): 030202. doi: 10.1088/1674-4926/43/3/030202 ****
      J M Cao, L F Yi, L M Ding, The origin and evolution of Y6 structure[J]. J. Semicond., 2022, 43(3): 030202. doi: 10.1088/1674-4926/43/3/030202.

      The origin and evolution of Y6 structure

      DOI: 10.1088/1674-4926/43/3/030202
      More Information
      • Jiamin Cao:got his PhD from National Center for Nanoscience and Technology in 2015 under the supervision of Professor Liming Ding. He was a visiting scholar in Ergang Wang Group at Chalmers University of Technology from Aug. 2018 to Aug. 2019. Now he is an associate professor in Hunan University of Science and Technology. His research focuses on organic functional materials for optoelectronics
      • Lifei Yi:obtained her BS in 2020. Now she is a master student at Hunan University of Science and Technology. Her work focuses on nonfullerene acceptors
      • Liming Ding:got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editor for Journal of Semiconductors
      • Corresponding author: jiamincao@hnust.edu.cnding@nanoctr.cn
      • Received Date: 2021-11-02
      • Published Date: 2022-03-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return