Citation: |
Chengyun Dong, Xiang An, Zhicheng Wu, Zhiguo Zhu, Chao Xie, Jian-An Huang, Linbao Luo. Multilayered PdTe2/thin Si heterostructures as self-powered flexible photodetectors with heart rate monitoring ability[J]. Journal of Semiconductors, 2023, 44(11): 112001. doi: 10.1088/1674-4926/44/11/112001
****
C Y Dong, X An, Z C Wu, Z G Zhu, C Xie, J A Huang, L B Luo. Multilayered PdTe2/thin Si heterostructures as self-powered flexible photodetectors with heart rate monitoring ability[J]. J. Semicond, 2023, 44(11): 112001. doi: 10.1088/1674-4926/44/11/112001
|
Multilayered PdTe2/thin Si heterostructures as self-powered flexible photodetectors with heart rate monitoring ability
DOI: 10.1088/1674-4926/44/11/112001
More Information
-
Abstract
Two-dimensional layered material/semiconductor heterostructures have emerged as a category of fascinating architectures for developing highly efficient and low-cost photodetection devices. Herein, we present the construction of a highly efficient flexible light detector operating in the visible-near infrared wavelength regime by integrating a PdTe2 multilayer on a thin Si film. A representative device achieves a good photoresponse performance at zero bias including a sizeable current on/off ratio exceeding 105, a decent responsivity of ~343 mA/W, a respectable specific detectivity of ~2.56 × 1012 Jones, and a rapid response time of 4.5/379 μs, under 730 nm light irradiation. The detector also displays an outstanding long-term air stability and operational durability. In addition, thanks to the excellent flexibility, the device can retain its prominent photodetection performance at various bending radii of curvature and upon hundreds of bending tests. Furthermore, the large responsivity and rapid response speed endow the photodetector with the ability to accurately probe heart rate, suggesting a possible application in the area of flexible and wearable health monitoring.-
Keywords:
- 2D layered material,
- heterostructure,
- flexible,
- photodetector,
- health monitoring
-
References
[1] Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotech, 2014, 9, 780 doi: 10.1038/nnano.2014.215[2] Buscema M, Island J O, Groenendijk D J, et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem Soc Rev, 2015, 44, 3691 doi: 10.1039/C5CS00106D[3] Long M S, Wang P, Fang H H, et al. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Funct Mater, 2019, 29, 1803807 doi: 10.1002/adfm.201803807[4] Fang H H, Hu W D. Photogating in low dimensional photodetectors. Adv Sci, 2017, 4, 1700323 doi: 10.1002/advs.201700323[5] Xie C, Yan F. Flexible photodetectors based on novel functional materials. Small, 2017, 13, 1701822 doi: 10.1002/smll.201701822[6] Lou Z, Shen G. Flexible photodetectors based on 1D inorganic nanostructures. Adv Sci, 2016, 3(6), 2198 doi: 10.1002/advs.201500287[7] Ren A B, Yuan L M, Xu H, et al. Recent progress of III–V quantum dot infrared photodetectors on silicon. J Mater Chem C, 2019, 7, 14441 doi: 10.1039/C9TC05738B[8] Wu J H, Lu Y H, Feng S R, et al. The interaction between quantum dots and graphene: The applications in graphene-based solar cells and photodetectors. Adv Funct Mater, 2018, 28, 1804712 doi: 10.1002/adfm.201804712[9] Zhai T Y, Li L, Ma Y, et al. One-dimensional inorganic nanostructures: Synthesis, field-emission and photodetection. Chem Soc Rev, 2011, 40, 2986 doi: 10.1039/c0cs00126k[10] Zhai T Y, Fang X S, Li L, et al. One-dimensional CdS nanostructures: Synthesis, properties, and applications. Nanoscale, 2010, 2, 168 doi: 10.1039/b9nr00415g[11] Jie J S, Zhang W J, Bello I, et al. One-dimensional II–VI nanostructures: Synthesis, properties and optoelectronic applications. Nano Today, 2010, 5, 313 doi: 10.1016/j.nantod.2010.06.009[12] Xie C, Mak C, Tao X M, et al. Photodetectors based on two-dimensional layered materials beyond graphene. Adv Funct Mater, 2017, 27, 1603886 doi: 10.1002/adfm.201603886[13] Pi L J, Li L, Liu K L, et al. Recent progress on 2D noble-transition-metal dichalcogenides. Adv Funct Materials, 2019, 29, 1904932 doi: 10.1002/adfm.201904932[14] Liu C Y, Guo J S, Yu L W, et al. Silicon/2D-material photodetectors: From near-infrared to mid-infrared. Light Sci Appl, 2021, 10, 123 doi: 10.1038/s41377-021-00551-4[15] Yao J D, Yang G W. 2D material broadband photodetectors. Nanoscale, 2020, 12, 454 doi: 10.1039/C9NR09070C[16] Tian W, Zhou H P, Li L. Hybrid organic-inorganic perovskite photodetectors. Small, 2017, 13, 1702107 doi: 10.1002/smll.201702107[17] Wang H, Kim D H. Perovskite-based photodetectors: Materials and devices. Chem Soc Rev, 2017, 46, 5204 doi: 10.1039/C6CS00896H[18] Xie C, Liu C K, Loi H L, et al. Perovskite-based phototransistors and hybrid photodetectors. Adv Funct Mater, 2020, 30, 1903907 doi: 10.1002/adfm.201903907[19] Yan Z H, Yang H, Yang Z, et al. Emerging two-dimensional tellurene and tellurides for broadband photodetectors. Small, 2022, 18, 2200016 doi: 10.1002/smll.202200016[20] Zhao Y D, Qiao J S, Yu Z H, et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv Mater, 2017, 29, 1604230 doi: 10.1002/adma.201604230[21] Yu X C, Yu P, Wu D, et al. Atomicallythin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat Commun, 2018, 9, 1545 doi: 10.1038/s41467-018-03935-0[22] Li L, Wang W K, Chai Y, et al. Few-layered PtS2 phototransistor on h-BN with high gain. Adv Funct Mater, 2017, 27, 1701011 doi: 10.1002/adfm.201701011[23] Liang Q J, Wang Q X, Zhang Q, et al. High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv Mater, 2019, 31, 1807609 doi: 10.1002/adma.201807609[24] Guo C, Hu Y B, Chen G, et al. Anisotropic ultrasensitive PdTe2-based phototransistor for room-temperature long-wavelength detection. Sci Adv, 2020, 6, eabb6500 doi: 10.1126/sciadv.abb6500[25] Li Z X, Ran W H, Yan Y X, et al. High-performance optical noncontact controlling system based on broadband PtTe x/Si heterojunction photodetectors for human–machine interaction. InfoMat, 2022, 4, e12261 doi: 10.1002/inf2.12261[26] Yim C, McEvoy N, Riazimehr S, et al. Wide spectral photoresponse of layered platinum diselenide-based photodiodes. Nano Lett, 2018, 18, 1794 doi: 10.1021/acs.nanolett.7b05000[27] Wu D, Guo J W, Du J, et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano, 2019, 13, 9907 doi: 10.1021/acsnano.9b03994[28] Zeng L H, Wu D, Lin S H, et al. Photodetectors: Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv Funct Mater, 2019, 29, 1970005 doi: 10.1002/adfm.201970005[29] Luo L B, Wang D, Xie C, et al. PdSe2 multilayer on germanium nanocones array with light trapping effect for sensitive infrared photodetector and image sensing application. Adv Funct Mater, 2019, 29, 1900849 doi: 10.1002/adfm.201900849[30] Chen C, Li K H, Li F, et al. One-dimensional Sb2Se3 enabling a highly flexible photodiode for light-source-free heart rate detection. ACS Photonics, 2020, 7, 352 doi: 10.1021/acsphotonics.9b01609[31] Xu Y J, Shen H L, Li Y F, et al. Self-powered and fast response MoO3/n-Si photodetectors on flexible silicon substrates with light-trapping structures. ACS Appl Electron Mater, 2022, 4, 4641 doi: 10.1021/acsaelm.2c00875[32] Ruan K Q, Ding K, Wang Y M, et al. Flexible graphene/silicon heterojunction solar cells. J Mater Chem A, 2015, 3, 14370 doi: 10.1039/C5TA03652F[33] Liang Y, Xie C, Dong C Y, et al. Electrically adjusted deep-ultraviolet/near-infrared single-band/dual-band imaging photodetectors based on Cs3Cu2I5/PdTe2/Ge multiheterostructures. J Mater Chem C, 2021, 9, 14897 doi: 10.1039/D1TC04290D[34] Tong X-W, Fan M, Xie C, Wang L, et al. A self-driven wideband wavelength sensor based on an individual PdTe2/Thin Si/PdTe2 heterojunction. J Mater Chem C, 2022, 10, 14334 doi: 10.1039/D2TC02850F[35] D'Olimpio G, Guo C, Kuo C N, et al. PdTe2 transition-metal dichalcogenide: Chemical reactivity, thermal stability, and device implementation. Adv Funct Mater, 2020, 30, 1906556 doi: 10.1002/adfm.201906556[36] Li E, Zhang R Z, Li H, et al. High quality PdTe2 thin films grown by molecular beam epitaxy. Chin Phys B, 2018, 27, 086804 doi: 10.1088/1674-1056/27/8/086804[37] Wu E, Wu D, Jia C, et al. In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photonics, 2019, 6, 565 doi: 10.1021/acsphotonics.8b01675[38] Li X M, Zhu M, Du M D, et al. High detectivity graphene-silicon heterojunction photodetector. Small, 2016, 12, 595 doi: 10.1002/smll.201502336[39] Wang L, Jie J S, Shao Z B, et al. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors. Adv Funct Mater, 2015, 25, 2910 doi: 10.1002/adfm.201500216[40] Zeng L H, Wu D, Jie J S, et al. Mid-infrared photodetectors: Van der waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv Mater, 2020, 32, 2070394 doi: 10.1002/adma.202070394[41] An X H, Liu F Z, Jung Y J, et al. Tunable graphene–silicon heterojunctions for ultrasensitive photodetection. Nano Lett, 2013, 13, 909 doi: 10.1021/nl303682j[42] Xie C, Wang Y, Zhang Z X, et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications. Nano Today, 2018, 19, 41 doi: 10.1016/j.nantod.2018.02.009[43] García de Arquer F P, Armin A, Meredith P, et al. Solution-processed semiconductors for next-generation photodetectors. Nat Rev Mater, 2017, 2, 16100 doi: 10.1038/natrevmats.2016.100[44] Gong X, Tong M H, Xia Y J, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 2009, 325, 1665 doi: 10.1126/science.1176706[45] Xiao P, Mao J, Ding K, et al. Solution-processed 3D RGO-MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection. Adv Mater, 2018, 30, 1801729 doi: 10.1002/adma.201801729[46] Li J H, Niu L Y, Zheng Z J, et al. Photosensitive graphene transistors. Adv Mater, 2014, 26, 5239 doi: 10.1002/adma.201400349[47] Yao J D, Zheng Z Q, Yang G W. Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Prog Mater Sci, 2019, 106, 100573 doi: 10.1016/j.pmatsci.2019.100573[48] Palik E D, Glembocki O J, Heard I Jr, et al. Etching roughness for (100) silicon surfaces in aqueous KOH. J Appl Phys, 1991, 70, 3291 doi: 10.1063/1.349263[49] Lochner C M, Khan Y, Pierre A, et al. All-organic optoelectronic sensor for pulse oximetry. Nat Commun, 2014, 5, 5745 doi: 10.1038/ncomms6745[50] Xu H H, Liu J, Zhang J, et al. Flexible organic/inorganic hybrid near-infrared photoplethysmogram sensor for cardiovascular monitoring. Adv Mater, 2017, 29, 1700975 doi: 10.1002/adma.201700975 -
Supplements
23040024 补充材料.pdf
-
Proportional views