Citation: |
Xiaotian Gao, Guohao Yu, Jiaan Zhou, Zheming Wang, Yu Li, Jijun Zhang, Xiaoyan Liang, Zhongming Zeng, Baoshun Zhang. Study of enhancement-mode GaN pFET with H plasma treated gate recess[J]. Journal of Semiconductors, 2023, 44(11): 112801. doi: 10.1088/1674-4926/44/11/112801
****
Xiaotian Gao, Guohao Yu, Jiaan Zhou, Zheming Wang, Yu Li, Jijun Zhang, Xiaoyan Liang, Zhongming Zeng, Baoshun Zhang, Study of enhancement-mode GaN pFET with H plasma treated gate recess[J]. Journal of Semiconductors, 2023, 44(11), 112801 doi: 10.1088/1674-4926/44/11/112801
|
Study of enhancement-mode GaN pFET with H plasma treated gate recess
DOI: 10.1088/1674-4926/44/11/112801
More Information
-
Abstract
This letter showcases the successful fabrication of an enhancement-mode (E-mode) buried p-channel GaN field-effect-transistor on a standard p-GaN/AlGaN/GaN-on-Si power HEMT substrate. The transistor exhibits a threshold voltage (VTH) of −3.8 V, a maximum ON-state current (ION) of 1.12 mA/mm, and an impressive ION/IOFF ratio of 107. To achieve these remarkable results, an H plasma treatment was strategically applied to the gated p-GaN region, where a relatively thick GaN layer (i.e., 70 nm) was kept intact without aggressive gate recess. Through this treatment, the top portion of the GaN layer was converted to be hole-free, leaving only the bottom portion p-type and spatially separated from the etched GaN surface and gate-oxide/GaN interface. This approach allows for E-mode operation while retaining high-quality p-channel characteristics.-
Keywords:
- GaN pFET,
- E-mode,
- H plasma treatment,
- ION/IOFF ratio
-
References
[1] Zimmermann T, Neuburger M, Kunze M, et al. P-channel InGaN-HFET structure based on polarization doping. IEEE Electron Device Lett, 2004, 25, 450 doi: 10.1109/LED.2004.830285[2] Hahn H, Reuters B, Pooth A, et al. P-channel enhancement and depletion mode GaN-based HFETs with quaternary backbarriers. IEEE Trans Electron Devices, 2013, 60, 3005 doi: 10.1109/TED.2013.2272330[3] Chowdhury N, Lemettinen J, Xie Q Y, et al. P-channel GaN transistor based on p-GaN/AlGaN/GaN on Si. IEEE Electron Device Lett, 2019, 40, 1036 doi: 10.1109/LED.2019.2916253[4] Bader S J, Chaudhuri R, Nomoto K, et al. Gate-recessed E-mode p-channel HFET with high on-current based on GaN/AlN 2D hole gas. IEEE Electron Device Lett, 2018, 39, 1848 doi: 10.1109/LED.2018.2874190[5] Cao X A, Pearton S J, Zhang A P, et al. Electrical effects of plasma damage in p-GaN. Appl Phys Lett, 1999, 75, 2569 doi: 10.1063/1.125080[6] Cao X A, Pearton S J, Dang G T, et al. GaN n- and p-type Schottky diodes: Effect of dry etch damage. IEEE Trans Electron Devices, 2000, 47, 1320 doi: 10.1109/16.848271[7] Narita T, Kikuta D, Takahashi N, et al. Study of etching-induced damage in GaN by hard X-ray photoelectron spectroscopy. Phys Status Solidi A, 2011, 208, 1541 doi: 10.1002/pssa.201000952[8] Fu K, Fu H Q, Huang X Q, et al. Demonstration of 1.27 kV etch-then-regrow GaN p-n junctions with low leakage for GaN power electronics. IEEE Electron Device Lett, 2019, 40, 1728 doi: 10.1109/LED.2019.2941830[9] Hao R H, Fu K, Yu G H, et al. Normally-off p-GaN/AlGaN/GaN high electron mobility transistors using hydrogen plasma treatment. Appl Phys Lett, 2016, 109, 152106 doi: 10.1063/1.4964518[10] Nakamura S, Iwasa N, Senoh M, et al. Hole compensation mechanism of P-type GaN films. Jpn J Appl Phys, 1992, 31, 1258 doi: 10.1143/JJAP.31.1258[11] Hao R H, Li W Y, Fu K, et al. Breakdown enhancement and current collapse suppression by high-resistivity GaN cap layer in normally-off AlGaN/GaN HEMTs. IEEE Electron Device Lett, 2017, 38, 1567 doi: 10.1109/LED.2017.2749678[12] Wei X, Zhang X D, Sun C, et al. Improvement of breakdown voltage and ON-resistance in normally-OFF AlGaN/GaN HEMTs using etching-free p-GaN stripe array gate. IEEE Trans Electron Devices, 2021, 68, 5041 doi: 10.1109/TED.2021.3105088[13] Wei X, Zhang X D, Tang W X, et al. 2.0 kV/2.1 mΩ·cm2 lateral p-GaN/AlGaN/GaN hybrid anode diodes with hydrogen plasma treatment. IEEE Electron Device Lett, 2022, 43, 693 doi: 10.1109/LED.2022.3159240[14] Wei X, Zhang X D, Zhou X, et al. Dual Current and voltage sensitivity temperature sensor based on lateral p-GaN/AlGaN/GaN hybrid anode diode. IEEE Sens J, 2021, 21, 22459 doi: 10.1109/JSEN.2021.3109915[15] Fu H Q, Fu K, Alugubelli S R, et al. High voltage vertical GaN p-n diodes with hydrogen-plasma based guard rings. IEEE Electron Device Lett, 2020, 41, 127 doi: 10.1109/LED.2019.2954123[16] Takagi S, Toriumi A, Iwase M, et al. On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration. IEEE Trans Electron Devices, 1994, 41, 2357 doi: 10.1109/16.337449[17] Sah C T, Ning T H, Tschopp L L. The scattering of electrons by surface oxide charges and by lattice vibrations at the silicon-silicon dioxide interface. Surf Sci, 1972, 32, 561 doi: 10.1016/0039-6028(72)90183-5[18] Pérez-Tomás A, Brosselard P, Godignon P, et al. Field-effect mobility temperature modeling of 4H-SiC metal-oxide-semiconductor transistors. J Appl Phys, 2006, 100, 114508. doi: 10.1063/1.2395597[19] Lombardi C, Manzini S, Saporito A, et al. A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans Comput Aided Des Integr Circuits Syst, 1988, 7, 1164 doi: 10.1109/43.9186[20] Tang W X, Zhou J A, Yu G H, et al. Effects of the stepped sidewall morphology on the ON-state performance for vertical GaN trench-gate MOSFETs. Appl Phys Express, 2022, 15, 076502 doi: 10.35848/1882-0786/ac727d[21] Yang C, Fu H Q, Su P Y, et al. Demonstration of GaN-based metal–insulator–semiconductor junction by hydrogen plasma treatment. Appl Phys Lett, 2020, 117, 052105 doi: 10.1063/5.0018473[22] Calzolaro A, Mikolajick T, Wachowiak A. Status of aluminum oxide gate dielectric technology for insulated-gate GaN-based devices. Materials, 2022, 15, 791 doi: 10.3390/ma15030791[23] Wang Y, Wang M, Xie B, et al. High-performance normally-off Al2O3/GaN MOSFET using a wet etching-based gate recess technique. IEEE Electron Device Letters, 2013, 34(11), 1370 doi: 10.1109/LED.2013.2279844[24] He J L, Zhong Y Z, Zhou Y, et al. Recovery of p-GaN surface damage induced by dry etching for the formation of p-type Ohmic contact. Applied Physics Express, 2019, 12(5), 055507 doi: 10.7567/1882-0786/ab13d7[25] Reuters B, Hahn H, Pooth A, et al. Fabrication of p-channel heterostructure field effect transistors with polarization-induced two-dimensional hole gases at metal–polar GaN/AlInGaN interfaces. Journal of Physics D: Applied Physics, 2014, 47(17), 175103 doi: 10.1088/0022-3727/47/17/175103[26] Chu R, Cao Y, Chen M, et al. An experimental demonstration of GaN CMOS technology. IEEE Electron Device Letters, 2016, 37(3), 269 doi: 10.1109/LED.2016.2515103[27] Nakajima A, Kubota S, Tsutsui K, et al. GaN-based complementary metal–oxide–semiconductor inverter with normally off Pch and Nch MOSFETs fabricated using polarisation-induced holes and electron channels. IET Power Electronics, 2018, 11(4), 689 doi: 10.1049/iet-pel.2017.0376[28] Zheng Z, Song W, Zhang L, et al. High ION and ION/IOFF ratio enhancement-mode buried p-channel GaN MOSFETs on p-GaN gate power HEMT platform. IEEE Electron Device Letters, 2019, 41(1), 26 doi: 10.1109/LED.2019.2954035 -
Proportional views