Citation: |
Yuanfei Gao, Jia-Min Lai, Jun Zhang. Phonon-assisted upconversion photoluminescence of quantum emitters[J]. Journal of Semiconductors, 2023, 44(4): 041901. doi: 10.1088/1674-4926/44/4/041901
****
Y F Gao, J M Lai, J Zhang. Phonon-assisted upconversion photoluminescence of quantum emitters[J]. J. Semicond, 2023, 44(4): 041901. doi: 10.1088/1674-4926/44/4/041901
|
Phonon-assisted upconversion photoluminescence of quantum emitters
DOI: 10.1088/1674-4926/44/4/041901
More Information
-
Abstract
Quantum emitters are widely used in quantum networks, quantum information processing, and quantum sensing due to their excellent optical properties. Compared with Stokes excitation, quantum emitters under anti-Stokes excitation exhibit better performance. In addition to laser cooling and nanoscale thermometry, anti-Stokes excitation can improve the coherence of single-photon sources for advanced quantum technologies. In this review, we follow the recent advances in phonon-assisted upconversion photoluminescence of quantum emitters and discuss the upconversion mechanisms, applications, and prospects for quantum emitters with anti-Stokes excitation. -
References
[1] Aharonovich I, Englund D, Toth M. Solid-state single-photon emitters. Nat Photonics, 2016, 10, 631 doi: 10.1038/nphoton.2016.186[2] Gao W B, Imamoglu A, Bernien H, et al. Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nat Photonics, 2015, 9, 363 doi: 10.1038/nphoton.2015.58[3] Atatüre M, Englund D, Vamivakas N, et al. Material platforms for spin-based photonic quantum technologies. Nat Rev Mater, 2018, 3, 38 doi: 10.1038/s41578-018-0008-9[4] Awschalom D D, Hanson R, Wrachtrup J, et al. Quantum technologies with optically interfaced solid-state spins. Nat Photonics, 2018, 12, 516 doi: 10.1038/s41566-018-0232-2[5] Ren S L, Tan Q H, Zhang J. Review on the quantum emitters in two-dimensional materials. J Semicond, 2019, 40, 071903 doi: 10.1088/1674-4926/40/7/071903[6] Fan J W, Cojocaru I, Becker J, et al. Germanium-vacancy color center in diamond as a temperature sensor. ACS Photonics, 2018, 5, 765 doi: 10.1021/acsphotonics.7b01465[7] Gao Y F, Lai J M, Sun Y J, et al. Charge state manipulation of NV centers in diamond under phonon-assisted anti-stokes excitation of NV0. ACS Photonics, 2022, 9, 1605 doi: 10.1021/acsphotonics.1c01928[8] Xia X J, Pant A, Ganas A S, et al. Quantum point defects for solid-state laser refrigeration. Adv Mater, 2021, 33, e1905406 doi: 10.1002/adma.201905406[9] Empedocles S A, Bawendi M G. Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science, 1997, 278, 2114 doi: 10.1126/science.278.5346.2114[10] Tran T T, Regan B, Ekimov E A ,et al. Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry. Sci Adv, 2019, 5, eaav9180 doi: 10.1126/sciadv.aav9180[11] Mendelson N, Chugh D, Reimers J R, et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat Mater, 2021, 20, 321 doi: 10.1038/s41563-020-00850-y[12] Lai J M, Sun Y J, Tan Q H, et al. Laser cooling of a lattice vibration in van der waals semiconductor. Nano Lett, 2022, 22, 7129 doi: 10.1021/acs.nanolett.2c02240[13] Wang F, Deng R R, Wang J, et al. Tuning upconversion through energy migration in core-shell nanoparticles. Nat Mater, 2011, 10, 968 doi: 10.1038/nmat3149[14] Zhang J, Li D H, Chen R J, et al. Laser cooling of a semiconductor by 40 Kelvin. Nature, 2013, 493, 504 doi: 10.1038/nature11721[15] Gan Z X, Wu X L, Zhou G X, et al. Is there real upconversion photoluminescence from graphene quantum dots. Adv Opt Mater, 2013, 1, 554 doi: 10.1002/adom.201300152[16] Tetienne J P, Dontschuk N, Broadway D A, et al. Quantum imaging of current flow in graphene. Sci Adv, 2017, 3, e1602429 doi: 10.1126/sciadv.1602429[17] Rose B C, Huang D, Zhang Z H, et al. Observation of an environmentally insensitive solid-state spin defect in diamond. Science, 2018, 361, 60 doi: 10.1126/science.aao0290[18] Anderson C P, Bourassa A, Miao K C, et al. Electrical and optical control of single spins integrated in scalable semiconductor devices. Science, 2019, 366, 1225 doi: 10.1126/science.aax9406[19] Michl J, Teraji T, Zaiser S, et al. Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces. Appl Phys Lett, 2014, 104, 102407 doi: 10.1063/1.4868128[20] Bradley C E, Randall J, Abobeih M H, et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys Rev X, 2019, 9, 031045 doi: 10.1103/PhysRevX.9.031045[21] Koehl W F, Buckley B B, Heremans F J, et al. Room temperature coherent control of defect spin qubits in silicon carbide. Nature, 2011, 479, 84 doi: 10.1038/nature10562[22] Christle D J, Falk A L, Andrich P, et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat Mater, 2015, 14, 160 doi: 10.1038/nmat4144[23] Widmann M, Lee S Y, Rendler T, et al. Coherent control of single spins in silicon carbide at room temperature. Nat Mater, 2015, 14, 164 doi: 10.1038/nmat4145[24] Kern M, Jeske J, Lau D W M, et al. Optical cryocooling of diamond. Phys Rev B, 2017, 95, 235306 doi: 10.1103/PhysRevB.95.235306[25] Gao Y F, Tan Q H, Liu X L, et al. Phonon-assisted photoluminescence up-conversion of silicon-vacancy centers in diamond. J Phys Chem Lett, 2018, 9, 6656 doi: 10.1021/acs.jpclett.8b02862[26] Tawfik S A, Ali S, Fronzi M, et al. First-principles investigation of quantum emission from hBN defects. Nanoscale, 2017, 9, 13575 doi: 10.1039/C7NR04270A[27] Nikolay N, Mendelson N, Özelci E, et al. Direct measurement of quantum efficiency of single-photon emitters in hexagonal boron nitride. OPTICA, 2019, 6, 1084 doi: 10.1364/OPTICA.6.001084[28] Grosso G, Moon H, Lienhard B, et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat Commun, 2017, 8, 705 doi: 10.1038/s41467-017-00810-2[29] Exarhos A L, Hopper D A, Patel R N, et al. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat Commun, 2019, 10, 222 doi: 10.1038/s41467-018-08185-8[30] Dietrich A, Bürk M, Steiger E S, et al. Reply to “Comment on ‘Observation of Fourier transform limited lines in hexagonal boron nitride’”. Phys Rev B, 2019, 100, 047402 doi: 10.1103/PhysRevB.100.047402[31] Noh G, Choi D, Kim J H, et al. Stark tuning of single-photon emitters in hexagonal boron nitride. Nano Lett, 2018, 18, 4710 doi: 10.1021/acs.nanolett.8b01030[32] Tran T T, Bradac C, Solntsev A S, et al. Suppression of spectral diffusion by anti-Stokes excitation of quantum emitters in hexagonal boron nitride. Appl Phys Lett, 2019, 115, 071102 doi: 10.1063/1.5099631[33] Tomm N, Javadi A, Antoniadis N O, et al. A bright and fast source of coherent single photons. Nat Nanotechnol, 2021, 16, 399 doi: 10.1038/s41565-020-00831-x[34] Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol, 2017, 12, 1026 doi: 10.1038/nnano.2017.218[35] Uppu R, Midolo L, Zhou X Y, et al. Quantum-dot-based deterministic photon-emitter interfaces for scalable photonic quantum technology. Nat Nanotechnol, 2021, 16, 1308 doi: 10.1038/s41565-021-00965-6[36] Schulte C H H, Hansom J, Jones A E, et al. Quadrature squeezed photons from a two-level system. Nature, 2015, 525, 222 doi: 10.1038/nature14868[37] He Y, He Y M, Liu J, et al. Dynamically controlled resonance fluorescence spectra from a doubly dressed single InGaAs quantum dot. Phys Rev Lett, 2015, 114, 097402 doi: 10.1103/PhysRevLett.114.097402[38] Liu S F, Wei Y M, Li X S, et al. Dual-resonance enhanced quantum light-matter interactions in deterministically coupled quantum-dot-micropillars. Light Sci Appl, 2021, 10, 158 doi: 10.1038/s41377-021-00604-8[39] Nemova G, Kashyap R. Laser cooling of solids. Rep Prog Phys, 2010, 73, 086501 doi: 10.1088/0034-4885/73/8/086501[40] Sheik-Bahae M, Epstein R I. Laser cooling of solids [Laser Photon. Rev. 3, No. 1-2, 67-84 (2009)]. Laser Photonics Rev, 2009, 3, 406 doi: 10.1002/lpor.200910509[41] Akizuki N, Shun A T, Mouri S, et al. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes. Nat Commun, 2015, 6, 8920 doi: 10.1038/ncomms9920[42] Jones A M, Yu H Y, Schaibley J R, et al. Excitonic luminescence upconversion in a two-dimensional semiconductor. Nat Phys, 2016, 12, 323 doi: 10.1038/nphys3604[43] Wang Q X, Zhang Q, Zhao X X, et al. Photoluminescence upconversion by defects in hexagonal boron nitride. Nano Lett, 2018, 18, 6898 doi: 10.1021/acs.nanolett.8b02804[44] Malein R N E, Khatri P, Ramsay A J, et al. Stimulated emission depletion spectroscopy of color centers in hexagonal boron nitride. ACS Photonics, 2021, 8, 1007 doi: 10.1021/acsphotonics.0c01917[45] Grosso G, Moon H, Ciccarino C J, et al. Low-temperature electron-phonon interaction of quantum emitters in hexagonal boron nitride. ACS Photonics, 2020, 7, 1410 doi: 10.1021/acsphotonics.9b01789[46] Hoese M, Reddy P, Dietrich A, et al. Mechanical decoupling of quantum emitters in hexagonal boron nitride from low-energy phonon modes. Sci Adv, 2020, 6, eaba6038 doi: 10.1126/sciadv.aba6038[47] Jadczak J, Bryja L, Kutrowska-Girzycka J, et al. Room temperature multi-phonon upconversion photoluminescence in monolayer semiconductor WS2. Nat Commun, 2019, 10, 107 doi: 10.1038/s41467-018-07994-1[48] Siyushev P, Nesladek M, Bourgeois E, et al. Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond. Science, 2019, 363, 728 doi: 10.1126/science.aav2789[49] Weber J R, Koehl W F, Varley J B, et al. Quantum computing with defects. Proc Natl Acad Sci USA, 2010, 107, 8513 doi: 10.1073/pnas.1003052107[50] Crane M J, Petrone A, Beck R A, et al. High-pressure, high-temperature molecular doping of nanodiamond. Sci Adv, 2019, 5, eaau6073 doi: 10.1126/sciadv.aau6073[51] Rahman A T M A, Barker P F. Laser refrigeration, alignment and rotation of levitated Yb3+: LF nanocrystals. Nat Photonics, 2017, 11, 634 doi: 10.1038/s41566-017-0005-3[52] Mohtashami A, Femius Koenderink A. Suitability of nanodiamond nitrogen-vacancy centers for spontaneous emission control experiments. New J Phys, 2013, 15, 043017 doi: 10.1088/1367-2630/15/4/043017[53] Sweeney T M, Carter S G, Bracker A S, et al. Cavity-stimulated Raman emission from a single quantum dot spin. Nat Photonics, 2014, 8, 442 doi: 10.1038/nphoton.2014.84[54] Epstein R I, Buchwald M I, Edwards B C, et al. Observation of laser-induced fluorescent cooling of a solid. Nature, 1995, 377, 500 doi: 10.1038/377500a0[55] Evans C L, Potma E O, Puoris'haag M, et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc Natl Acad Sci USA, 2005, 102, 16807 doi: 10.1073/pnas.0508282102[56] Camp Jr C H, Cicerone M T. Chemically sensitive bioimaging with coherent Raman scattering. Nat Photonics, 2015, 9, 295 doi: 10.1038/nphoton.2015.60[57] Alkahtani M, Cojocaru I, Liu X H, et al. Tin-vacancy in diamonds for luminescent thermometry. Appl Phys Lett, 2018, 112, 241902 doi: 10.1063/1.5037053[58] Nguyen C T, Evans R E, Sipahigil A, et al. All-optical nanoscale thermometry with silicon-vacancy centers in diamond. Appl Phys Lett, 2018, 112, 203102 doi: 10.1063/1.5029904[59] Plakhotnik T, Aman H, Chang H C. All-optical single-nanoparticle ratiometric thermometry with a noise floor of 0.3 K Hz-1/2. Nanotechnology, 2015, 26, 245501 doi: 10.1088/0957-4484/26/24/245501[60] Maher R C, Cohen L F, Gallop J C, et al. Temperature-dependent anti-stokes/stokes ratios under surface-enhanced Raman scattering conditions. J Phys Chem B, 2006, 110, 6797 doi: 10.1021/jp056466r[61] Song L, Ci L J, Lu H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett, 2010, 10, 3209 doi: 10.1021/nl1022139[62] Sallen G, Tribu A, Aichele T, et al. Subnanosecond spectral diffusion measurement using photon correlation. Nat Photonics, 2010, 4, 696 doi: 10.1038/nphoton.2010.174[63] Wigger D, Schmidt R, Del Pozo-Zamudio O, et al. Phonon-assisted emission and absorption of individual color centers in hexagonal boron nitride. 2D Mater, 2019, 6, 035006 doi: 10.1088/2053-1583/ab1188[64] Ye Z K, Lin X, Wang N, et al. Phonon-assisted up-conversion photoluminescence of quantum dots. Nat Commun, 2021, 12, 4283 doi: 10.1038/s41467-021-24560-4[65] Morozov Y V, Zhang S B, Pant A, et al. Can lasers really refrigerate CdS nanobelts. Nature, 2019, 570, E60 doi: 10.1038/s41586-019-1269-1[66] Jelezko F, Gaebel T, Popa I, et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys Rev Lett, 2004, 93, 130501 doi: 10.1103/PhysRevLett.93.130501[67] Li P B, Xiang Z L, Rabl P, et al. Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes. Phys Rev Lett, 2016, 117, 015502 doi: 10.1103/PhysRevLett.117.015502[68] Lo Piparo N, Razavi M, Munro W J. Measurement-device-independent quantum key distribution with nitrogen vacancy centers in diamond. Phys Rev A, 2017, 95, 022338 doi: 10.1103/PhysRevA.95.022338[69] Reineck P, Capelli M, Lau D M, et al. Bright and photostable nitrogen-vacancy fluorescence from unprocessed detonation nanodiamond. Nanoscale, 2017, 9, 497 doi: 10.1039/C6NR07834F[70] Acosta V M, Bauch E, Ledbetter M P, et al. Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys Rev B, 2009, 80, 115202 doi: 10.1103/PhysRevB.80.115202[71] Beha K, Batalov A, Manson N B, et al. Optimum photoluminescence excitation and recharging cycle of single nitrogen-vacancy centers in ultrapure diamond. Phys Rev Lett, 2012, 109, 097404 doi: 10.1103/PhysRevLett.109.097404[72] Wang J F, Yan F F, Li Q, et al. Robust coherent control of solid-state spin qubits using anti-Stokes excitation. Nat Commun, 2021, 12, 3223 doi: 10.1038/s41467-021-23471-8[73] Hensen B, Bernien H, Dréau A E, et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 2015, 526, 682 doi: 10.1038/nature15759[74] Kalb N, Reiserer A A, Humphreys P C, et al. Entanglement distillation between solid-state quantum network nodes. Science, 2017, 356, 928 doi: 10.1126/science.aan0070[75] Humphreys P C, Kalb N, Morits J P J, et al. Deterministic delivery of remote entanglement on a quantum network. Nature, 2018, 558, 268 doi: 10.1038/s41586-018-0200-5[76] Soykal Ö O, Dev P, Economou S E. Silicon vacancy center in 4H-SiC: Electronic structure and spin-photon interfaces. Phys Rev B, 2016, 93, 081207 doi: 10.1103/PhysRevB.93.081207[77] Takahashi Y, Inui Y, Chihara M, et al. A micrometre-scale Raman silicon laser with a microwatt threshold. Nature, 2013, 498, 470 doi: 10.1038/nature12237[78] Lu X Y, Moille G, Li Q, et al. Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nat Photonics, 2019, 13, 593 doi: 10.1038/s41566-019-0464-9[79] Marty G, Combrié S, Raineri F, et al. Photonic crystal optical parametric oscillator. Nat Photonics, 2021, 15, 53 doi: 10.1068/s41566-020-00737-z[80] Zhang J, Zhang Q, Wang X Z, et al. Resolved-sideband Raman cooling of an optical phonon in semiconductor materials. Nat Photonics, 2016, 10, 600 doi: 10.1038/nphoton.2016.122 -
Proportional views