Citation: |
Xin Chao, Chengzhan Yan, Huaping Zhao, Zhijie Wang, Yong Lei. Micro-nano structural electrode architecture for high power energy storage[J]. Journal of Semiconductors, 2023, 44(5): 050201. doi: 10.1088/1674-4926/44/5/050201
****
X Chao, C Z Yan, H P Zhao, Z J Wang, Y Lei. Micro-nano structural electrode architecture for high power energy storage[J]. J. Semicond, 2023, 44(5): 050201. doi: 10.1088/1674-4926/44/5/050201
|
Micro-nano structural electrode architecture for high power energy storage
DOI: 10.1088/1674-4926/44/5/050201
More Information
-
References
[1] Li C, Li J, Huang Y, et al. Recent development in electronic structure tuning of graphitic carbon nitride for highly efficient photocatalysis. J Semicond, 2022, 43, 021701 doi: 10.1088/1674-4926/43/2/021701[2] Ma M, Huang Y, Liu J, et al. Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting. J Semicond, 2020, 41, 091702 doi: 10.1088/1674-4926/41/9/091702[3] Sha M, Zhao H, Lei Y. Updated insights into 3D architecture electrodes for micropower sources. Adv Mater, 2021, 33, 2103304 doi: 10.1002/adma.202103304[4] Huang Y, Liu J, Deng Y, et al. The application of perovskite materials in solar water splitting. J Semicond, 2020, 41, 011701 doi: 10.1088/1674-4926/41/1/011701[5] Xia Q, Zan F, Xu J, et al. All-solid-state thin film lithium/lithium-ion microbatteries for powering the Internet of Things. Adv Mater, 2022, 35, 2200538 doi: 10.1002/adma.202200538[6] Ma J, Zheng S, Das P, et al. Sodium ion microscale electrochemical energy storage device: present status and future perspective. Small Structures, 2020, 1, 2000053 doi: 10.1002/sstr.202000053[7] Jiang Q, Lei Y, Liang H, et al. Review of MXene electrochemical microsupercapacitors. Energy Stor Mater, 2020, 27, 78 doi: 10.1016/j.ensm.2020.01.018[8] Zhao C, Xu B, Wang Z, et al. Boron-doped III–V semiconductors for Si-based optoelectronic devices. J Semicond, 2020, 41, 011301 doi: 10.1088/1674-4926/41/1/011301[9] Zhang P, Yang S, Xie H, et al. Advanced three-dimensional microelectrode architecture design for high-performance on-chip micro-supercapacitors. ACS Nano, 2022, 16, 17593 doi: 10.1021/acsnano.2c07609[10] Yuan Y, Jiang L, Li X, et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nat Commun, 2020, 11, 6185 doi: 10.1038/s41467-020-19985-2[11] Kim S W, Hwang J, Ha S J, et al. Ultrathin MoS2 flakes embedded in nanoporous graphene films for a multi-functional electrode. J Mater Chem A, 2021, 9, 928 doi: 10.1039/D0TA10397G[12] Sun P, Li X, Shao J, et al. High-performance packaged 3D lithium-ion microbatteries fabricated using imprint lithography. Adv Mater, 2021, 33, 2006229 doi: 10.1002/adma.202006229[13] Hallot M, Nikitin V, Lebedev O I, et al. 3D LiMn2O4 thin film deposited by ALD: a road toward high-capacity electrode for 3D li-ion microbatteries. Small, 2022, 18, 2107054 doi: 10.1002/smll.202107054[14] Lei Z, Liu L, Zhao H, et al. Nanoelectrode design from microminiaturized honeycomb monolith with ultrathin and stiff nanoscaffold for high-energy micro-supercapacitors. Nat Commun, 2020, 11, 299 doi: 10.1038/s41467-019-14170-6[15] Zhu Z, Kan R, Wu P, et al. A durable Ni-Zn microbattery with ultrahigh-rate capability enabled by in situ reconstructed nanoporous nickel with epitaxial phase. Small, 2021, 17, 2103136 doi: 10.1002/smll.202103136[16] Kim M, Kang S K, Choi J, et al. Patterning design of electrode to improve the interfacial stability and rate capability for fast rechargeable solid-state lithium-ion batteries. Nano Lett, 2022, 22, 10232 doi: 10.1021/acs.nanolett.2c03320[17] Wang L, Tang Y, Li Y, et al. Multifunctional integrated interdigital microsupercapacitors and self-powered iontronic tactile pressure sensor for wearable electronics. ACS Appl Mater, 2022, 14, 47136 doi: 10.1021/acsami.2c15117[18] Zhang J, Zhang G, Zhou T, et al. Recent developments of planar micro-supercapacitors: fabrication, properties, and applications. Adv Funct, 2020, 30, 191000 doi: 10.1002/adfm.201910000[19] Wei W, Ouyang S, Zhang T. Perylene diimide self-assembly: From electronic structural modulation to photocatalytic applications. J Semicond, 2020, 41, 091708 doi: 10.1088/1674-4926/41/9/091708[20] Zhao C, Wang Z. An efficient entangled-photon source from semiconductor quantum dots. J Semicond, 2020, 41, 010401 doi: 10.1088/1674-4926/41/1/010401[21] Pikul J H, Gang Zhang H, Cho J, et al. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat Commun, 2013, 4, 1732 doi: 10.1038/ncomms2747[22] Fang Z, Gao L, Chen H, et al. 3D interdigital electrodes dielectric capacitor array for energy storage based on through glass vias. Adv Mater Technol, 2022, 7, 2101530 doi: 10.1002/admt.202101530[23] Bounor B, Asbani B, Douard C, et al. On chip MnO2-based 3D micro-supercapacitors with ultra-high areal energy density. Energy Stor Mater, 2021, 38, 520 doi: 10.1016/j.ensm.2021.03.034[24] Li F, Hu A, Zhao X, et al. On-chip high-energy interdigital micro-supercapacitors with 3D nanotubular array electrodes. J Mater Chem A, 2022, 10, 14051 doi: 10.1039/D2TA02660K[25] Cao Y, Zhang H, Zhang Y, et al. Epitaxial nanofiber separator enabling folding-resistant coaxial fiber-supercapacitor module. Energy Stor Mater, 2022, 49, 102 doi: 10.1016/j.ensm.2022.03.011[26] Mo F, Liang G, Huang Z, et al. An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties. Adv Mater, 2020, 32, 1902151 doi: 10.1002/adma.201902151[27] Ma X, Jiang Z, Lin Y. Flexible energy storage devices for wearable bioelectronics. J Semicond, 2021, 42, 101602 doi: 10.1088/1674-4926/42/10/101602[28] Zhu H, Sha M, Zhao H, et al. Highly-rough surface carbon nanofibers film as an effective interlayer for lithium–sulfur batteries. J Semicond, 2020, 41, 092701 doi: 10.1088/1674-4926/41/9/092701[29] Naderi L, Shahrokhian S. Nickel vanadium sulfide grown on nickel copper phosphide Dendrites/Cu fibers for fabrication of all-solid-state wire-type micro-supercapacitors. Chem Eng J, 2020, 392, 124880 doi: 10.1016/j.cej.2020.124880[30] Guo J, Li L, Luo J, et al. Polypyrrole-assisted nitrogen doping strategy to boost vanadium dioxide performance for wearable nonpolarity supercapacitor and aqueous zinc-ion battery. Adv Energy Mater, 2022, 12, 2201481 doi: 10.1002/aenm.202201481[31] Han L, Luo J, Zhang R, et al. Arrayed heterostructures of MoS2 nanosheets anchored TiN nanowires as efficient pseudocapacitive anodes for fiber-shaped ammonium-ion asymmetric supercapacitors. ACS Nano, 2022, 16, 14951 doi: 10.1021/acsnano.2c05905[32] Wang Z, Ni J, Li L, et al. Theoretical simulation and modeling of three-dimensional batteries. Cell Rep, 2020, 1, 100078 doi: 10.1016/j.xcrp.2020.100078[33] Miyamoto K, Broderick S, Rajan K. Three-dimensional microbattery design via an automatic geometry generator and machine-learning-based performance simulator. Cell Rep, 2021, 2, 100504 doi: 10.1016/j.xcrp.2021.100504[34] Yin Z, Hu M, Liu J, et al. Tunable crystal structure of Cu–Zn–Sn–S nanocrystals for improving photocatalytic hydrogen evolution enabled by copper element regulation. J Semicond, 2022, 43, 032701 doi: 10.1088/1674-4926/43/3/032701[35] Nasori N, Dai T, Jia X, et al. Realizing super-long Cu2O nanowires arrays for high-efficient water splitting applications with a convenient approach. J Semicond, 2019, 40, 052701 doi: 10.1088/1674-4926/40/5/052701[36] Liu J, Wang Z, Lei Y. A close step towards industrialized application of solar water splitting. J Semicond, 2020, 41, 090401 doi: 10.1088/1674-4926/41/9/090401[37] Li Y, Xiao S, Qiu T, et al. Recent advances on energy storage microdevices: From materials to configurations. Energy Stor Mater, 2022, 45, 741 doi: 10.1016/j.ensm.2021.12.026Getrightsandcontent[38] Li L, Hu C, Liu W, et al. Progress and perspectives in designing flexible microsupercapacitors. Micromachines, 2021, 12, 1305 doi: 10.3390/mi12111305 -
Proportional views