Citation: |
Xuanze Zhou, Guangwei Xu, Shibing Long. A large-area multi-finger β-Ga2O3 MOSFET and its self-heating effect[J]. Journal of Semiconductors, 2023, 44(7): 072804. doi: 10.1088/1674-4926/44/7/072804
****
Xuanze Zhou, Guangwei Xu, Shibing Long. 2023: A large-area multi-finger β-Ga2O3 MOSFET and its self-heating effect. Journal of Semiconductors, 44(7): 072804. doi: 10.1088/1674-4926/44/7/072804
|
A large-area multi-finger β-Ga2O3 MOSFET and its self-heating effect
DOI: 10.1088/1674-4926/44/7/072804
More Information
-
Abstract
The self-heating effect severely limits device performance and reliability. Although some studies have revealed the heat distribution of β-Ga2O3 MOSFETs under biases, those devices all have small areas and have difficulty reflecting practical conditions. This work demonstrated a multi-finger β-Ga2O3 MOSFET with a maximum drain current of 0.5 A. Electrical characteristics were measured, and the heat dissipation of the device was investigated through infrared images. The relationship between device temperature and time/bias is analyzed.-
Keywords:
- β-Ga2O3,
- MOSFET,
- multi-finger,
- self-heating effect
-
References
[1] Higashiwaki M, Sasaki K, Murakami H, et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 2016, 31, 034001 doi: 10.1088/0268-1242/31/3/034001[2] Dong H, Xue H W, He Q M, et al. Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material. J Semicond, 2019, 40, 011802 doi: 10.1088/1674-4926/40/1/011802[3] Kuramata A, Koshi K, Watanabe S, et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J Appl Phys, 2016, 55, 1202A2 doi: 10.7567/JJAP.55.1202A2[4] Tomm Y, Reiche P, Klimm D, et al. Czochralski grown Ga2O3 crystals. J Cryst Growth, 2000, 220, 510 doi: 10.1016/S0022-0248(00)00851-4[5] Yu Y T, Xiang X Q, Zhou X Z, et al. Device topological thermal management of β-Ga2O3 Schottky barrier diodes. Chin Phys B, 2021, 30, 067302 doi: 10.1088/1674-1056/abeee2[6] Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 2012, 100, 013504 doi: 10.1063/1.3674287[7] Liu H Y, Li J N, Lv Y J, et al. Improved electrical performance of lateral β-Ga2O3 MOSFETs utilizing slanted fin channel structure. Appl Phys Lett, 2022, 121, 202101 doi: 10.1063/5.0119694[8] Bhattacharyya A, Ranga P, Roy S, et al. Multi-kV class β-Ga2O3 MESFETs with a lateral figure of merit up to 355 MW/cm². IEEE Electron Device Lett, 2021, 42, 1272 doi: 10.1109/LED.2021.3100802[9] Zhou X Z, Ma Y J, Xu G W, et al. Enhancement-mode β-Ga2O3 U-shaped gate trench vertical MOSFET realized by oxygen annealing. Appl Phys Lett, 2022, 121, 223501 doi: 10.1063/5.0130292[10] Wang C L, Zhou H, Zhang J C, et al. Hysteresis-free and μs-switching of D/E-modes Ga2O3 hetero-junction FETs with the BV2/Ron, sp of 0.74/0.28 GW/cm2. Appl Phys Lett, 2022, 120, 112101 doi: 10.1063/5.0084804[11] Zhou X, Liu Q, Hao W, et al. Normally-off β-Ga2O3 power heterojunction fieldeffect-transistor realized by p-NiO and recessed gate. IEEE 26th Int Symp Power Semiconductor Devices IC’s (ISPSD), 2022 doi: 10.1109/ISPSD49238.2022.9813678[12] Kim S, Zhang Y W, Yuan C, et al. Thermal management of β-Ga2O3 current aperture vertical electron transistors. IEEE Trans Compon, Packag Manufact Technol, 2021, 11, 1171 doi: 10.1109/TCPMT.2021.3089321[13] Chatterjee B, Zeng K, Nordquist C D, et al. Device-level thermal management of gallium oxide field-effect transistors. IEEE Trans Compon Packag Manuf Technol, 2019, 9, 2352 doi: 10.1109/TCPMT.2019.2923356[14] Xu W H, Wang Y B, You T G, et al. First demonstration of waferscale heterogeneous integration of Ga2O3 MOSFETs on SiC and Si substrates by ion-cutting process. 2019 IEEE International Electron Devices Meeting (IEDM), 2019, 12 doi: 10.1109/IEDM19573.2019.8993501[15] Noh J, Alajlouni S, Tadjer M J, et al. High performance β-Ga2O3 nano-membrane field effect transistors on a high thermal conductivity diamond substrate. IEEE J Electron Devices, 2019, 7, 914 doi: 10.1109/JEDS.2019.2933369[16] Zhou H, Maize K, Noh J, et al. Thermodynamic studies of Ga2O3 nanomembrane field-effect transistors on a sapphire substrate. ACS Omega, 2017, 2, 7723 doi: 10.1021/acsomega.7b01313[17] Chatterjee B, Li W, Nomoto K, et al. Thermal design of multi-fin Ga2O3 vertical transistors. Appl Phys Lett, 2021, 119, 103502 doi: 10.1063/5.0056557[18] Kumar N, Vaca D, Joishi C, et al. Ultrafast thermoreflectance imaging and electrothermal modeling of β-Ga2O3 MESFETs. IEEE Electron Device Lett, 2020, 41, 641 doi: 10.1109/LED.2020.2975038[19] Böcker J, Tetzner K, Heucke S, et al. Dispersion effects in on-state resistance of lateral Ga2O3 MOSFETs at 300 V switching. Electon Lett, 2020, 56, 838 doi: 10.1049/el.2020.1286[20] Gong H H, Zhou F, Yu X X, et al. 70-μm-body Ga2O3 Schottky barrier diode with 1.48 K/W thermal resistance, 59 A surge current and 98.9% conversion efficiency. IEEE Electron Device Lett, 2022, 43, 773 doi: 10.1109/LED.2022.3162393 -
Proportional views