Citation: |
Zhenhao Sun, Ning Tang, Shuaiyu Chen, Fan Zhang, Haoran Fan, Shixiong Zhang, Rongxin Wang, Xi Lin, Jianping Liu, Weikun Ge, Bo Shen. Spin injection into heavily-doped n-GaN via Schottky barrier[J]. Journal of Semiconductors, 2023, 44(8): 082501. doi: 10.1088/1674-4926/44/8/082501
****
Z H Sun, N Tang, S Y Chen, F Zhang, H R Fan, S X Zhang, R X Wang, X Lin, J P Liu, W K Ge, B Shen. Spin injection into heavily-doped n-GaN via Schottky barrier[J]. J. Semicond, 2023, 44(8): 082501. doi: 10.1088/1674-4926/44/8/082501
|
Spin injection into heavily-doped n-GaN via Schottky barrier
DOI: 10.1088/1674-4926/44/8/082501
More Information
-
Abstract
Spin injection and detection in bulk GaN were investigated by performing magnetotransport measurements at low temperatures. A non-local four-terminal lateral spin valve device was fabricated with Co/GaN Schottky contacts. The spin injection efficiency of 21% was achieved at 1.7 K. It was confirmed that the thin Schottky barrier formed between the heavily n-doped GaN and Co was conducive to the direct spin tunneling, by reducing the spin scattering relaxation through the interface states.-
Keywords:
- GaN,
- spin injection,
- Schottky barrier,
- magnetoresistance
-
References
[1] Datta S, Das B. Electronic analog of the electro-optic modulator. Appl Phys Lett, 1990, 56, 665 doi: 10.1063/1.102730[2] Schliemann J, Egues J C, Loss D. Nonballistic spin-field-effect transistor. Phys Rev Lett, 2003, 90, 146801 doi: 10.1103/PhysRevLett.90.146801[3] Thompson S E, Parthasarathy S. Moore’s law: The future of Si microelectronics. Mater Today, 2006, 9, 20 doi: 10.1016/S1369-7021(06)71539-5[4] Dhar S, Brandt O, Ramsteiner M, et al. Colossal magnetic moment of Gd in GaN. Phys Rev Lett, 2005, 94, 037205 doi: 10.1103/PhysRevLett.94.037205[5] Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287, 1019 doi: 10.1126/science.287.5455.1019[6] Yin C M, Shen B, Zhang Q, et al. Rashba and Dresselhaus spin-orbit coupling in GaN-based heterostructures probed by the circular photogalvanic effect under uniaxial strain. Appl Phys Lett, 2010, 97, 181904 doi: 10.1063/1.3511768[7] Zhang S X, Tang N, Zhang X Y, et al. Excitonic effects on electron spin orientation and relaxation in wurtzite GaN. Phys Rev B, 2021, 104, 125202 doi: 10.1103/PhysRevB.104.125202[8] Johnson M, Silsbee R H. Spin-injection experiment. Phys Rev B, 1988, 37, 5326 doi: 10.1103/PhysRevB.37.5326[9] Schmidt G, Ferrand D, Molenkamp L W, et al. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys Rev B, 2000, 62, R4790 doi: 10.1103/PhysRevB.62.R4790[10] Rashba E I. Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem. Phys Rev B, 2000, 62, R16267 doi: 10.1103/PhysRevB.62.R16267[11] Jaffrès H, Fert A. Spin injection from a ferromagnetic metal into a semiconductor. J Appl Phys, 2002, 91, 8111 doi: 10.1063/1.1451887[12] Bhattacharya A, Baten M Z, Bhattacharya P. Electrical spin injection and detection of spin precession in room temperature bulk GaN lateral spin valves. Appl Phys Lett, 2016, 108, 042406 doi: 10.1063/1.4940888[13] Kum H, Heo J, Jahangir S, et al. Room temperature single GaN nanowire spin valves with FeCo/MgO tunnel contacts. Appl Phys Lett, 2012, 100, 182407 doi: 10.1063/1.4711850[14] Song A K, Chen J J, Lan J S, et al. Modulating room temperature spin injection into GaN towards the high-efficiency spin-light emitting diodes. Appl Phys Express, 2020, 13, 043006 doi: 10.35848/1882-0786/ab810b[15] Huang L, Wu H, Liu P, et al. Room temperature spin injection into SiC via Schottky barrier. Appl Phys Lett, 2018, 113, 222402 doi: 10.1063/1.5052193[16] Hanbicki A T, Jonker B T, Itskos G, et al. Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor. Appl Phys Lett, 2002, 80, 1240 doi: 10.1063/1.1449530[17] Zube C, Malindretos J, Watschke L, et al. Spin injection in epitaxial MnGa(111)/GaN(0001) heterostructures. J Appl Phys, 2018, 123, 033906 doi: 10.1063/1.5000348[18] Jönsson-Åkerman B J, Escudero R, Leighton C, et al. Reliability of normal-state current–voltage characteristics as an indicator of tunnel-junction barrier quality. Appl Phys Lett, 2000, 77, 1870 doi: 10.1063/1.1310633[19] Liu X C, Tang N, Fang C, et al. Spin relaxation induced by interfacial effects in n-GaN/MgO/Co spin injectors. RSC Adv, 2020, 10, 12547 doi: 10.1039/D0RA00464B[20] Jiang L, Choi W S, Jeen H, et al. Tunneling electroresistance induced by interfacial phase transitions in ultrathin oxide heterostructures. Nano Lett, 2013, 13, 5837 doi: 10.1021/nl4025598[21] Wang Y H, Zhang Q, Zhou J L, et al. Fowler–Nordheim tunneling-assisted enhancement of tunneling electroresistance effect through a composite barrier. Appl Phys Lett, 2020, 116, 202901 doi: 10.1063/5.0001770[22] Jedema F J, Filip A T, van Wees B J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature, 2001, 410, 345 doi: 10.1038/35066533[23] Jedema F J, Heersche H B, Filip A T, et al. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature, 2002, 416, 713 doi: 10.1038/416713a[24] van’t Erve O M J, Hanbicki A T, Holub M, et al. Electrical injection and detection of spin-polarized carriers in silicon in a lateral transport geometry. Appl Phys Lett, 2007, 91, 212109 doi: 10.1063/1.2817747[25] Zhou Y, Han W, Chang L T, et al. Electrical spin injection and transport in germanium. Phys Rev B, 2011, 84, 125323 doi: 10.1103/PhysRevB.84.125323[26] Valenzuela S O, Monsma D J, Marcus C M, et al. Spin polarized tunneling at finite bias. Phys Rev Lett, 2005, 94, 196601 doi: 10.1103/PhysRevLett.94.196601[27] Tombros N, Jozsa C, Popinciuc M, et al. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature, 2007, 448, 571 doi: 10.1038/nature06037[28] van 't Erve O M J, Awo-Affouda C, Hanbicki A T, et al. Information processing with pure spin currents in silicon: Spin injection, extraction, manipulation, and detection. IEEE Trans Electron Devices, 2009, 56, 2343 doi: 10.1109/TED.2009.2027975[29] Lou X H, Adelmann C, Crooker S A, et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nat Phys, 2007, 3, 197 doi: 10.1038/nphys543[30] Jedema F J, Costache M V, Heersche H B, et al. Electrical detection of spin accumulation and spin precession at room temperature in metallic spin valves. Appl Phys Lett, 2002, 81, 5162 doi: 10.1063/1.1532753[31] Buß J H, Rudolph J, Natali F, et al. Temperature dependence of electron spin relaxation in bulk GaN. Phys Rev B, 2010, 81, 155216 doi: 10.1103/PhysRevB.81.155216[32] Zhang X Y, Tang N, Yang L Y, et al. Electrical spin injection into the 2D electron gas in AlN/GaN heterostructures with ultrathin AlN tunnel barrier. Adv Funct Mater, 2021, 31, 2009771 doi: 10.1002/adfm.202009771 -
Proportional views