Citation: |
Zhenyao Li, Haonan Chang, Jia-Min Lai, Feilong Song, Qifeng Yao, Hanqing Liu, Haiqiao Ni, Zhichuan Niu, Jun Zhang. Terahertz phononic crystal in plasmonic nanocavity[J]. Journal of Semiconductors, 2023, 44(8): 082901. doi: 10.1088/1674-4926/44/8/082901
****
Zhenyao Li, Haonan Chang, Jia-Min Lai, Feilong Song, Qifeng Yao, Hanqing Liu, Haiqiao Ni, Zhichuan Niu, Jun Zhang. 2023: Terahertz phononic crystal in plasmonic nanocavity. Journal of Semiconductors, 44(8): 082901. doi: 10.1088/1674-4926/44/8/082901
|
Terahertz phononic crystal in plasmonic nanocavity
doi: 10.1088/1674-4926/44/8/082901
More Information-
Abstract
Interaction between photons and phonons in cavity optomechanical systems provides a new toolbox for quantum information technologies. A GaAs/AlAs pillar multi-optical mode microcavity optomechanical structure can obtain phonons with ultra-high frequency (~THz). However, the optical field cannot be effectively restricted when the diameter of the GaAs/AlAs pillar microcavity decreases below the diffraction limit of light. Here, we design a system that combines Ag nanocavity with GaAs/AlAs phononic superlattices, where phonons with the frequency of 4.2 THz can be confined in a pillar with ~4 nm diameter. The Qc/V reaches 0.22 nm−3, which is ~80 times that of the photonic crystal (PhC) nanobeam and ~100 times that of the hybrid point-defect PhC bowtie plasmonic nanocavity, where Qc is optical quality factor and V is mode volume. The optomechanical single-photon coupling strength can reach 12 MHz, which is an order of magnitude larger than that of the PhC nanobeam. In addition, the mechanical zero-point fluctuation amplitude is 85 fm and the efficient mass is 0.27 zg, which is much smaller than the PhC nanobeam. The phononic superlattice-Ag nanocavity optomechanical devices hold great potential for applications in the field of integrated quantum optomechanics, quantum information, and terahertz-light transducer.-
Keywords:
- Optomechanics,
- phononic crystal,
- Ag plasmonic nanocavity,
- confinement,
- coupling
-
References
[1] Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics. Rev Mod Phys, 2014, 86, 1391 doi: 10.1103/RevModPhys.86.1391[2] Abbott B P, Abbott R, Abbott T D, et al. Observation of gravitational waves from a binary black hole merger. Phys Rev Lett, 2016, 116, 061102 doi: 10.1103/PhysRevLett.116.061102[3] Wallucks A, Marinković I, Hensen B, et al. A quantum memory at telecom wavelengths. Nat Phys, 2020, 16, 772 doi: 10.1038/s41567-020-0891-z[4] Kuruma K, Pingault B, Chia C, et al. Coupling of a single tin-vacancy center to a photonic crystal cavity in diamond. Appl Phys Lett, 2021, 118, 230601 doi: 10.1063/5.0051675[5] Barzanjeh S, Xuereb A, Gröblacher S, et al. Optomechanics for quantum technologies. Nat Phys, 2022, 18, 15 doi: 10.1038/s41567-021-01402-0[6] Zhou Z Q, Cui Y, Tan P H, et al. Optical and electrical properties of two-dimensional anisotropic materials. J Semicond, 2019, 40, 061001 doi: 10.1088/1674-4926/40/6/061001[7] Chang H N, Li Z Y, Lou W K, et al. Terahertz cavity optomechanics using a topological nanophononic superlattice. Nanoscale, 2022, 14, 13046 doi: 10.1039/D2NR03376C[8] Meenehan S M. Cavity optomechanics at Millikelvin temperatures. PhD Dissertation, California Institute of Technology, 2015 (in USA)[9] Zhang H Y, Liu Y C, Wang C Y, et al. Hybrid photonic-plasmonic nano-cavity with ultra-high Q/V. Opt Lett, 2020, 45, 4794 doi: 10.1364/OL.402781[10] Benz F, Schmidt M K, Dreismann A, et al. Single-molecule optomechanics in picocavities. Science, 2016, 354, 726 doi: 10.1126/science.aah5243[11] Su R, Ghosh S, Wang J, et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat Phys, 2020, 16, 301 doi: 10.1038/s41567-019-0764-5[12] Spillane S M, Kippenberg T J, Vahala K J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature, 2002, 415, 621 doi: 10.1038/415621a[13] Armani D K, Kippenberg T J, Spillane S M, et al. Ultra-high-Q toroid microcavity on a chip. Nature, 2003, 421, 925 doi: 10.1038/nature01371[14] Zhang H Y, Zhao W, Liu Y T, et al. Photonic-plasmonic hybrid microcavities: Physics and applications. Chin Phys B, 2021, 30, 117801 doi: 10.1088/1674-1056/ac0db3[15] Esmann M, Lamberti F R, Senellart P, et al. Topological nanophononic states by band inversion. Phys Rev B, 2018, 97, 155422 doi: 10.1103/PhysRevB.97.155422[16] Chan J, Alegre T P, Safavi-Naeini A H, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 2011, 478, 89 doi: 10.1038/nature10461[17] Chan J, Safavi-Naeini A H, Hill J T, et al. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl Phys Lett, 2012, 101, 081115 doi: 10.1063/1.4747726[18] MacCabe G S, Ren H J, Luo J, et al. Nano-acoustic resonator with ultralong phonon lifetime. Science, 2020, 370, 840 doi: 10.1126/science.abc7312[19] Norte R A, Moura J P, Gröblacher S. Mechanical resonators for quantum optomechanics experiments at room temperature. Phys Rev Lett, 2016, 116, 147202 doi: 10.1103/PhysRevLett.116.147202[20] Vahala K J. Optical microcavities. Nature, 2003, 424, 839 doi: 10.1038/nature01939[21] Asano T, Noda S. Optimization of photonic crystal nanocavities based on deep learning. Opt Express, 2018, 26, 32704 doi: 10.1364/OE.26.032704[22] Yamamoto T, Pashkin Y A, Astafiev O, et al. Demonstration of conditional gate operation using superconducting charge qubits. Nature, 2003, 425, 941 doi: 10.1038/nature02015[23] Li Q, Wang S S, Chen Y T, et al. Experimental demonstration of plasmon propagation, coupling, and splitting in silver nanowire at 1550-nm wavelength. IEEE J Sel Top Quantum Electron, 2011, 17, 1107 doi: 10.1109/JSTQE.2010.2070061[24] Ji Y N, Fang G Q, Shang J Y, et al. Aligned plasmonic antenna and upconversion nanoparticles toward polarization-sensitive narrowband photodetection and imaging at 1550 nm. ACS Appl Mater Interfaces, 2022, 14, 50045 doi: 10.1021/acsami.2c14127[25] Kim M, Jeong C Y, Heo H, et al. Optical reflection modulation using surface plasmon resonance in a graphene-embedded hybrid plasmonic waveguide at an optical communication wavelength. Opt Lett, 2015, 40, 871 doi: 10.1364/OL.40.000871[26] Edahiro T, Horiguchi M, Chida K, et al. Spectral loss characteristics of GeO2-P2O5-doped silica graded-index fibres in long-wavelength band. Electron Lett, 1979, 15, 274 doi: 10.1049/el:19790194[27] Henschel H, Koehn O, Schmidt H U. Radiation-induced loss of optical fibers at 1300-nm and 1550-nm wavelength. Journal, 1996, 68, 2811 doi: doi.org/10.1117/12.254026[28] Mueller T, Xia F N, Avouris P. Graphene photodetectors for high-speed optical communications. Nat Photonics, 2010, 4, 297 doi: 10.1038/nphoton.2010.40[29] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424, 824 doi: 10.1038/nature01937[30] Holsteen A L, Raza S, Fan P Y, et al. Purcell effect for active tuning of light scattering from semiconductor optical antennas. Science, 2017, 358, 1407 doi: 10.1126/science.aao5371[31] Li Y Z, Cui K Y, Feng X, et al. Optomechanical crystal nanobeam cavity with high optomechanical coupling rate. J Opt, 2015, 17, 045001 doi: 10.1088/2040-8978/17/4/045001[32] Biegelsen D K. Photoelastic tensor of silicon and the volume dependence of the average gap. Phys Rev Lett, 1974, 32, 1196 doi: 10.1103/PhysRevLett.32.1196[33] Lide D R, Bruno T J. CRC handbook of chemistry and physics. Cleveland, Ohio: CRC Press, 2012[34] Baker C. On-chip nano-optomechanical whispering gallery resonators. PhD Dissertation, Université Paris, 2013 (in French)[35] Chen C L. Foundations for Guided-Wave Optics. Hoboken: Wiley, 2005[36] Lamberti F R, Yao Q, Lanco L, et al. Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 GHz range. Opt Express, 2017, 25, 24437 doi: 10.1364/OE.25.024437 -
Proportional views