Citation: |
Xiyu Hou, Lianjun Wen, Fengyue He, Ran Zhuo, Lei Liu, Hailong Wang, Qing Zhong, Dong Pan, Jianhua Zhao. Embedded high-quality ternary GaAs1−xSbx quantum dots in GaAs nanowires by molecular-beam epitaxy[J]. Journal of Semiconductors, 2024, 45(8): 082101. doi: 10.1088/1674-4926/24030038
****
X Y Hou, L J Wen, F Y He, R Zhuo, L Liu, H L Wang, Q Zhong, D Pan, and J H Zhao, Embedded high-quality ternary GaAs1−xSbx quantum dots in GaAs nanowires by molecular-beam epitaxy[J]. J. Semicond., 2024, 45(8), 082101 doi: 10.1088/1674-4926/24030038
|
Embedded high-quality ternary GaAs1−xSbx quantum dots in GaAs nanowires by molecular-beam epitaxy
DOI: 10.1088/1674-4926/24030038
More Information
-
Abstract
Semiconductor quantum dots are promising candidates for preparing high-performance single photon sources. A basic requirement for this application is realizing the controlled growth of high-quality semiconductor quantum dots. Here, we report the growth of embedded GaAs1−xSbx quantum dots in GaAs nanowires by molecular-beam epitaxy. It is found that the size of the GaAs1−xSbx quantum dot can be well-defined by the GaAs nanowire. Energy dispersive spectroscopy analyses show that the antimony content x can be up to 0.36 by tuning the growth temperature. All GaAs1−xSbx quantum dots exhibit a pure zinc-blende phase. In addition, we have developed a new technology to grow GaAs passivation layers on the sidewalls of the GaAs1−xSbx quantum dots. Different from the traditional growth process of the passivation layer, GaAs passivation layers can be grown simultaneously with the growth of the embedded GaAs1−xSbx quantum dots. The spontaneous GaAs passivation layer shows a pure zinc-blende phase due to the strict epitaxial relationship between the quantum dot and the passivation layer. The successful fabrication of embedded high-quality GaAs1−xSbx quantum dots lays the foundation for the realization of GaAs1−xSbx-based single photon sources.-
Keywords:
- semiconductor,
- quantum dot,
- nanowire,
- GaAs1−xSbx,
- molecular-beam epitaxy
-
References
[1] Pan J W, Chen Z B, Lu C Y, et al. Multiphoton entanglement and interferometry. Rev Mod Phys, 2012, 84(2), 777 doi: 10.1103/RevModPhys.84.777[2] Kok P, Munro W J, Nemoto K, et al. Linear optical quantum computing with photonic qubits. Rev Mod Phys, 2007, 79(1), 135 doi: 10.1103/RevModPhys.79.135[3] Wei Y J, He Y M, Chen M C, et al. Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage. Nano Lett, 2014, 14(11), 6515 doi: 10.1021/nl503081n[4] Wang H, He Y M, Chung T H, et al. Towards optimal single-photon sources from polarized microcavities. Nat Photonics, 2019, 13(11), 770 doi: 10.1038/s41566-019-0494-3[5] Li J P, Gu X M, Qin J, et al. Heralded nondestructive quantum entangling gate with single-photon sources. Phys Rev Lett, 2021, 126(14), 140501 doi: 10.1103/PhysRevLett.126.140501[6] Lu C Y, Pan J W. Quantum-dot single-photon sources for the quantum Internet. Nat Nanotechnol, 2021, 16(12), 1294 doi: 10.1038/s41565-021-01033-9[7] Pelucchi E, Fagas G, Aharonovich I, et al. The potential and global outlook of integrated photonics for quantum technologies. Nat Rev Phys, 2022, 4(3), 194 doi: 10.1038/s42254-021-00398-z[8] Proppe A H, Berkinsky D B, Zhu H, et al. Highly stable and pure single-photon emission with 250 ps optical coherence times in InP colloidal quantum dots. Nat Nanotechnol, 2023, 18(9), 993 doi: 10.1038/s41565-023-01432-0[9] Haffouz S, Zeuner K D, Dalacu D, et al. Bright single InAsP quantum dots at telecom wavelengths in position-controlled InP nanowires: The role of the photonic waveguide. Nano Lett, 2018, 18(5), 3047 doi: 10.1021/acs.nanolett.8b00550[10] Müller T, Skiba-Szymanska J, Krysa A B, et al. A quantum light-emitting diode for the standard telecom window around 1, 550 nm. Nat Commun, 2018, 9(1), 862 doi: 10.1038/s41467-018-03251-7[11] Xu S W, Wei Y M, Su R B, et al. Bright single-photon sources in the telecom band by deterministically coupling single quantum dots to a hybrid circular Bragg resonator. Photon Res, 2022, 10(8), B1 doi: 10.1364/PRJ.461034[12] Huang X Y, Su R B, Yang J W, et al. Wafer-scale epitaxial low density InAs/GaAs quantum dot for single photon emitter in three-inch substrate. Nanomaterials, 2021, 11(4), 930 doi: 10.3390/nano11040930[13] Alloing B, Zinoni C, Zwiller V, et al. Growth and characterization of single quantum dots emitting at 1300 nm. Appl Phys Lett, 2005, 86(10), 101908 doi: 10.1063/1.1872213[14] Ward M B, Karimov O Z, Unitt D C, et al. On-demand single-photon source for 1.3 μm telecom fiber. Appl Phys Lett, 2005, 86(20), 201111 doi: 10.1063/1.1922573[15] Trevisi G, Seravalli L, Frigeri P, et al. Low density InAs/(In)GaAs quantum dots emitting at long wavelengths. Nanotechnology, 2009, 20(41), 415607 doi: 10.1088/0957-4484/20/41/415607[16] Kettler J, Paul M, Olbrich F, et al. Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: Shifting the emission wavelength from 1.0 to 1.3 μm. Appl Phys B, 2016, 122(48), 1 doi: 10.1007/s00340-015-6280-0[17] Olbrich F, Kettler J, Bayerbach M, et al. Temperature-dependent properties of single long-wavelength InGaAs quantum dots embedded in a strain reducing layer. J Appl Phys, 2017, 121(18), 184302 doi: 10.1063/1.4983362[18] Paul M, Kettler J, Zeuner K, et al. Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm. Appl Phys Lett, 2015, 106(12), 122105 doi: 10.1063/1.4916349[19] Zhou X Y, Zhai L, Liu J. Epitaxial quantum dots: A semiconductor launchpad for photonic quantum technologies. Photonics Insights, 2022, 1(2), R07 doi: 10.3788/PI.2022.R07[20] Cingolani R, Rinaldi R. Optical and electrical injection of single quantum dots: Beyond the inhomogeneous broadening issues. Phys Stat Sol (b), 2002, 234(1), 411 doi: 10.1002/1521-3951(200211)234:1<411::AID-PSSB411>3.0.CO;2-A[21] Nguyen H A, Dixon G, Dou F Y, et al. Design rules for obtaining narrow luminescence from semiconductors made in solution. Chem Rev, 2023, 123(12), 7890 doi: 10.1021/acs.chemrev.3c00097[22] Perret N, Morris D, Franchomme-Fossé L, et al. Origin of the inhomogenous broadening and alloy intermixing in InAs/GaAs self-assembled quantum dots. Phys Rev B, 2000, 62(8), 5092 doi: 10.1103/PhysRevB.62.5092[23] Buckley S, Rivoire K, Vučković J. Engineered quantum dot single-photon sources. Rep Prog Phys, 2012, 75(12), 126503 doi: 10.1088/0034-4885/75/12/126503[24] Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol, 2017, 12(11), 1026 doi: 10.1038/nnano.2017.218[25] Seguin R, Schliwa A, Germann T D, et al. Control of fine-structure splitting and excitonic binding energies in selected individual InAs∕GaAs quantum dots. Appl Phys Lett, 2006, 89(26), 263109 doi: 10.1063/1.2424446[26] Kitamura S, Senshu M, Katsuyama T, et al. Optical characterization of In-flushed InAs/GaAs quantum dots emitting a broadband spectrum with multiple peaks at ~1 μm. Nanoscale Res Lett, 2015, 10(231), 1 doi: 10.1186/s11671-015-0941-0[27] Ruiz-Marín N, Reyes D F, Stanojević L, et al. Effect of the AlAs capping layer thickness on the structure of InAs/GaAs QD. Appl Surf Sci, 2022, 573(30), 151572 doi: 10.1016/j.apsusc.2021.151572[28] Gurioli M, Wang Z M, Rastelli A, et al. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices. Nat Mater, 2019, 18(8), 799 doi: 10.1038/s41563-019-0355-y[29] Shen J J, Chen H T, He J, et al. Enhanced surface passivation of GaAs nanostructures via an optimized SiO2 sol-gel shell growth. Appl Phys Lett, 2024, 124(12), 121112 doi: 10.1063/5.0185838[30] Yuan X M, Pan D, Zhou Y J, et al. Selective area epitaxy of III-V nanostructure arrays and networks: Growth, applications, and future directions. Appl Phys Rev, 2021, 8(2), 021302 doi: 10.1063/5.0044706[31] Mäntynen H, Anttu N, Sun Z P, et al. Single-photon sources with quantum dots in III–V nanowires. Nanophotonics, 2019, 8(5), 747 doi: 10.1515/nanoph-2019-0007[32] Mohammadnejad S, Mahmoudi A, Arab H. A new III–V nanowire-quantum dot single photon source with improved Purcell factor for quantum communication. Opt Quantum Electron, 2022, 54(4), 220 doi: 10.1007/s11082-022-03567-1[33] Reimer M E, Bulgarini G, Akopian N, et al. Bright single-photon sources in bottom-up tailored nanowires. Nat Commun, 2012, 3(1), 737 doi: 10.1038/ncomms1746[34] Arab H, MohammadNejad S, KhodadadKashi A, et al. Recent advances in nanowire quantum dot (NWQD) single-photon emitters. Quantum Inf Process, 2019, 19(44), 1 doi: 10.1007/s11128-019-2542-9[35] Holmes M J, Choi K, Kako S, et al. Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Lett, 2014, 14(2), 982 doi: 10.1021/nl404400d[36] Dalacu D, Mnaymneh K, Lapointe J, et al. Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires. Nano Lett, 2012, 12(11), 5919 doi: 10.1021/nl303327h[37] Laferrière P, Yeung E, Giner L, et al. Multiplexed single-photon source based on multiple quantum dots embedded within a single nanowire. Nano Lett, 2020, 20(5), 3688 doi: 10.1021/acs.nanolett.0c00607[38] Li P H, Yu P, Wang W H, et al. Efficient single-photon emission from a nanowire quantum dot coupled to a plasmonic nanoantenna. J Light Technol, 2021, 39(23), 7495 doi: 10.1109/JLT.2021.3114730[39] Wang W, Yip S, Meng Y, et al. Antimony-rich GaAs xSb1– x nanowires passivated by organic sulfides for high-performance transistors and near-infrared photodetectors. Adv Opt Mater, 2021, 9(22), 2101289 doi: 10.1002/adom.202101289[40] Jastrzebski L, Lagowski J, Gatos H C. Application of scanning electron microscopy to determination of surface recombination velocity: GaAs. Appl Phys Lett, 1975, 27(10), 537 doi: 10.1063/1.88276[41] Tatebayashi J, Kako S, Ho J, et al. Room-temperature lasing in a single nanowire with quantum dots. Nat Photonics, 2015, 9(8), 501 doi: 10.1038/nphoton.2015.111[42] Bounouar S, Elouneg-Jamroz M, den Hertog M, et al. Ultrafast room temperature single-photon source from nanowire-quantum dots. Nano Lett, 2012, 12(6), 2977 doi: 10.1021/nl300733f[43] Ma L, Zhang X H, Li H L, et al. Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 μm. Semicond Sci Technol, 2015, 30(10), 105033 doi: 10.1088/0268-1242/30/10/105033[44] Huh J, Yun H, Kim D C, et al. Rectifying single GaAsSb nanowire devices based on self-induced compositional gradients. Nano Lett, 2015, 15(6), 3709 doi: 10.1021/acs.nanolett.5b00089[45] Pan C H, Lee C P. Design and modeling of InP-based InGaAs/GaAsSb type-II "W" type quantum wells for mid-Infrared laser applications. J Appl Phys, 2013, 113(4), 043112 doi: 10.1063/1.4789634[46] Huh J, Kim D C, Munshi A M, et al. Low frequency noise in single GaAsSb nanowires with self-induced compositional gradients. Nanotechnology, 2016, 27(38), 385703 doi: 10.1088/0957-4484/27/38/385703[47] Todorovic J, Kauko H, Ahtapodov L, et al. The effects of Sb concentration variation on the optical properties of GaAsSb/GaAs heterostructured nanowires. Semicond Sci Technol, 2013, 28(11), 115004 doi: 10.1088/0268-1242/28/11/115004[48] Dheeraj D L, Patriarche G, Zhou H, et al. Growth and structural characterization of GaAs/GaAsSb axial heterostructured nanowires. J Cryst Growth, 2009, 311(7), 1847 doi: 10.1016/j.jcrysgro.2008.11.090[49] Wang S, Li H L, Tang J L, et al. Crystal phase control in self-catalyzed GaAs nanowires grown on pre-etched Si substrates. Mater Adv, 2023, 4(18), 4250 doi: 10.1039/D3MA00358B[50] Dheeraj D L, Patriarche G, Zhou H L, et al. Growth and characterization of wurtzite GaAs nanowires with defect-free zinc blende GaAsSb inserts. Nano Lett, 2008, 8(12), 4459 doi: 10.1021/nl802406d[51] Gang G W, Lee J H, Kim S Y, et al. Microstructural evolution in self-catalyzed GaAs nanowires during in situ TEM study. Nanotechnology, 2021, 32(14), 145709 doi: 10.1088/1361-6528/abd437[52] Ren D D, Dheeraj D L, Jin C J, et al. New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays. Nano Lett, 2016, 16(2), 1201 doi: 10.1021/acs.nanolett.5b04503[53] Panciera F, Baraissov Z, Patriarche G, et al. Phase selection in self-catalyzed GaAs nanowires. Nano Lett, 2020, 20(3), 1669 doi: 10.1021/acs.nanolett.9b04808[54] Cirlin G E, Dubrovskii V G, Samsonenko Y B, et al. Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy. Phys Rev B, 2010, 82(3), 035302 doi: 10.1103/PhysRevB.82.035302[55] Li L X, Pan D, Xue Y Z, et al. Near full-composition-range high-quality GaAs1- xSb x nanowires grown by molecular-beam epitaxy. Nano Lett, 2017, 17(2), 622 doi: 10.1021/acs.nanolett.6b03326[56] Li L X, Pan D, Yu X Z, et al. Manipulation of morphology and structure of the top of GaAs nanowires grown by molecular-beam epitaxy. J Semicond, 2017, 38(10), 103001 doi: 10.1088/1674-4926/38/10/103001[57] Li L X, Pan D, So H, et al. GaAsSb/InAs core-shell nanowires grown by molecular-beam epitaxy. J Alloys Compd, 2017, 724(15), 659 doi: 10.1016/j.jallcom.2017.06.346[58] Ahtapodov L, Kauko H, Munshi A M, et al. Determination of GaAs zinc blende/wurtzite band offsets utilizing GaAs nanowires with an axial GaAsSb insert. J Appl Phys, 2017, 122(24), 245102 doi: 10.1063/1.4991884[59] Plissard S, Dick K A, Wallart X, et al. Gold-free GaAs/GaAsSb heterostructure nanowires grown on silicon. Appl Phys Lett, 2010, 96(12), 121901 doi: 10.1063/1.3367746[60] Wen L J, Pan D, Liao D Y, et al. Foreign-catalyst-free GaSb nanowires directly grown on cleaved Si substrates by molecular-beam epitaxy. Nanotechnology, 2020, 31(15), 155601 doi: 10.1088/1361-6528/ab5d78[61] Krogstrup P, Jørgensen H I, Johnson E, et al. Advances in the theory of III–V nanowire growth dynamics. J Phys D: Appl Phys, 2013, 46(31), 313001 doi: 10.1088/0022-3727/46/31/313001[62] Arif O, Zannier V, Rossi F, et al. Self-catalyzed InSb/InAs quantum dot nanowires. Nanomaterials, 2021, 11(1), 179 doi: 10.3390/nano11010179[63] Pan D, Wang J Y, Zhang W, et al. Dimension engineering of high-quality InAs nanostructures on a wafer scale. Nano Lett, 2019, 19(3), 1632 doi: 10.1021/acs.nanolett.8b04561[64] Liu L, Wen L J, He F Y, et al. Selective area growth of in-plane InAs nanowires and nanowire networks on Si substrates by molecular-beam epitaxy. Nanotechnology, 2024, 35(6), 065705 doi: 10.1088/1361-6528/ad0b1f -
Supplements
Supplementary_Materials.pdf -
Proportional views