Citation: |
Danrui Wan, Jianping Zhou, Guoyun Meng, Ning Su, Dongdong Zhang, Lian Duan, Junqiao Ding. Peripheral carbazole units-decorated MR emitter containing B−N covalent bond for highly efficient green OLEDs with low roll-off[J]. Journal of Semiconductors, 2024, 45(8): 082402. doi: 10.1088/1674-4926/24040008
****
D R Wan, J P Zhou, G Y Meng, N Su, D D Zhang, L Duan, and J Q Ding, Peripheral carbazole units-decorated MR emitter containing B−N covalent bond for highly efficient green OLEDs with low roll-off[J]. J. Semicond., 2024, 45(8), 082402 doi: 10.1088/1674-4926/24040008
|
Peripheral carbazole units-decorated MR emitter containing B−N covalent bond for highly efficient green OLEDs with low roll-off
DOI: 10.1088/1674-4926/24040008
More Information
-
Abstract
Boron−nitrogen doped multiple resonance (BN-MR) emitters, characterized by B−N covalent bonds, offer distinctive advantages as pivotal building blocks for facile access to novel MR emitters featuring narrowband spectra and high efficiency. However, there remains a scarcity of exploration concerning synthetic methods and structural derivations to expand the library of novel BN-MR emitters. Herein, we present the synthesis of a BN-MR emitter, tCz[B−N]N, through a one-pot borylation reaction directed by the amine group, achieving an impressive yield of 94%. The emitter is decorated by incorporating two 3,6-di-t-butylcarbazole (tCz) units into a B−N covalent bond doped BN-MR parent molecule via para-C−π−D and para-N−π−D conjugations. This peripheral decoration strategy enhances the reverse intersystem crossing process and shifts the emission band towards the pure green region, peaking at 526 nm with a narrowband full-width at half maximum (FWHM) of 41 nm. Consequently, organic light emitting diodes (OLEDs) employing this emitter achieved a maximum external quantum efficiency (EQEmax) value of 27.7%, with minimal efficiency roll-off. Even at a practical luminance of 1000 cd∙m−2, the device maintains a high EQE value of 24.6%. -
References
[1] Hatakeyama T, Shiren K, Nakajima K, et al. Ultrapure blue thermally activated delayed fluorescence molecules: Efficient HOMO-LUMO separation by the multiple resonance effect. Adv Mater, 2016, 28, 2777 doi: 10.1002/adma.201505491[2] Mamada M, Hayakawa M, Ochi J, et al. Organoboron-based multiple-resonance emitters: Synthesis, structure–property correlations, and prospects. Chem Soc Rev, 2024, 53, 1624 doi: 10.1039/D3CS00837A[3] Kim H J, Yasuda T. Narrowband emissive thermally activated delayed fluorescence materials. Adv Opt Mater, 2022, 10, 2201714 doi: 10.1002/adom.202201714[4] Madayanad Suresh S, Hall D, Beljonne D, et al. Multiresonant thermally activated delayed fluorescence emitters based on heteroatom-doped nanographenes: Recent advances and prospects for organic light-emitting diodes. Adv Funct Mater, 2020, 30, 1908677 doi: 10.1002/adfm.201908677[5] Han J M, Chen Y Y, Li N Q, et al. Versatile boron-based thermally activated delayed fluorescence materials for organic light-emitting diodes. Aggregate, 2022, 3, e182 doi: 10.1002/agt2.182[6] Chen C, Du C Z, Wang X Y. The rise of 1, 4-BN-heteroarenes: Synthesis, properties, and applications. Adv Sci, 2022, 9, 2200707 doi: 10.1002/advs.202200707[7] Yu Y J, Liu F M, Meng X Y, et al. Carbonyl-containing thermally activated delayed fluorescence emitters for narrow-band electroluminescence. Chem Eur J, 2023, 29, e202202628 doi: 10.1002/chem.202202628[8] Kang J, Jeon S O, Kim I, et al. Color stable deep blue multi-resonance organic emitters with narrow emission and high efficiency. Adv Sci, 2023, 10, 2302619 doi: 10.1002/advs.202302619[9] Wei J B, Zhang C, Zhang D D, et al. Indolo[3, 2, 1-jk]carbazole embedded multiple-resonance fluorophors for narrowband deep-blue electroluminescence with EQE ≈ 34.7 % and CIEy ≈ 0.085. Angew Chem Int Ed, 2021, 60, 12269 doi: 10.1002/anie.202017328[10] Hirai H, Nakajima K, Nakatsuka S, et al. One-step borylation of 1, 3-diaryloxybenzenes towards efficient materials for organic light-emitting diodes. Angew Chem Int Ed, 2015, 54, 13581 doi: 10.1002/anie.201506335[11] Kondo Y, Yoshiura K, Kitera S, et al. Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter. Nat Photonics, 2019, 13, 678 doi: 10.1038/s41566-019-0476-5[12] Yang M L, Park I S, Yasuda T. Full-color, narrowband, and high-efficiency electroluminescence from boron and carbazole embedded polycyclic heteroaromatics. J Am Chem Soc, 2020, 142, 19468 doi: 10.1021/jacs.0c10081[13] Liu Y, Xiao X, Ran Y, et al. Molecular design of thermally activated delayed fluorescent emitters for narrowband orange-red OLEDs boosted by a cyano-functionalization strategy. Chem Sci, 2021, 12, 9408 doi: 10.1039/D1SC02042K[14] Zhang Y W, Zhang D D, Huang T Y, et al. Multi-resonance deep-red emitters with shallow potential-energy surfaces to surpass energy-gap law. Angew Chem Int Ed, 2021, 60, 20498 doi: 10.1002/anie.202107848[15] Park I S, Min H, Yasuda T. Ultrafast triplet–singlet exciton interconversion in narrowband blue organoboron emitters doped with heavy chalcogens. Angew Chem Int Ed, 2022, 61, e202205684 doi: 10.1002/anie.202205684[16] Xu Y C, Wang Q Y, Cai X L, et al. Frontier molecular orbital engineering: Constructing highly efficient narrowband organic electroluminescent materials. Angew Chem Int Ed, 2023, 62, e202312451 doi: 10.1002/anie.202312451[17] Hu Y X, Miao J S, Hua T, et al. Efficient selenium-integrated TADF OLEDs with reduced roll-off. Nat Photonics, 2022, 16, 803 doi: 10.1038/s41566-022-01083-y[18] Wu X G, Huang J W, Su B K, et al. Fabrication of circularly polarized MR-TADF emitters with asymmetrical peripheral-lock enhancing helical B/N-doped nanographenes. Adv Mater, 2022, 34, e2105080 doi: 10.1002/adma.202105080[19] Luo X F, Zhang L X, Zheng Y X, et al. Improving reverse intersystem crossing of MR-TADF emitters for OLEDs. J Semicond, 2022, 43, 110202 doi: 10.1088/1674-4926/43/11/110202[20] Zhang Y W, Zhang D D, Wei J B, et al. Multi-resonance induced thermally activated delayed fluorophores for narrowband green OLEDs. Angew Chem Int Ed, 2019, 58, 16912 doi: 10.1002/anie.201911266[21] Xu Y C, Cheng Z, Li Z Q, et al. Molecular-structure and device-configuration optimizations toward highly efficient green electroluminescence with narrowband emission and high color purity. Adv Opt Mater, 2020, 8, 1902142 doi: 10.1002/adom.201902142[22] Xu Y C, Li C L, Li Z Q, et al. Constructing charge-transfer excited states based on frontier molecular orbital engineering: Narrowband green electroluminescence with high color purity and efficiency. Angew Chem Int Ed, 2020, 59, 17442 doi: 10.1002/anie.202007210[23] Knöller J A, Meng G Y, Wang X, et al. Intramolecular borylation via sequential B-mes bond cleavage for the divergent synthesis of B, N, B-doped benzo[4]helicenes. Angew Chem Int Ed, 2020, 59, 3156 doi: 10.1002/anie.201912340[24] Matsui K, Oda S, Yoshiura K, et al. One-shot multiple borylation toward BN-doped nanographenes. J Am Chem Soc, 2018, 140, 1195 doi: 10.1021/jacs.7b10578[25] Lv X L, Miao J S, Liu M H, et al. Extending the π-skeleton of multi-resonance TADF materials towards high-efficiency narrowband deep-blue emission. Angew Chem Int Ed, 2022, 61, e202201588 doi: 10.1002/anie.202201588[26] Wu L, Huang Z Y, Miao J S, et al. Orienting group directed cascade borylation for efficient one-shot synthesis of 1, 4-BN-doped polycyclic aromatic hydrocarbons as narrowband organic emitters. Angew Chem Int Ed, 2024, 63, e202402020 doi: 10.1002/anie.202402020[27] Fan X C, Huang F, Wu H, et al. A quadruple-borylated multiple-resonance emitter with para/meta heteroatomic patterns for narrowband orange-red emission. Angew Chem Int Ed, 2023, 62, e202305580 doi: 10.1002/anie.202305580[28] Meng G Y, Dai H Y, Huang T Y, et al. Amine-directed formation of B‒N bonds for BN-fused polycyclic aromatic multiple resonance emitters with narrowband emission. Angew Chem Int Ed, 2022, 61, e202207293 doi: 10.1002/anie.202207293[29] Meng G Y, Dai H Y, Zhou J P, et al. Wide-range color-tunable polycyclo-heteraborin multi-resonance emitters containing B-N covalent bonds. Chem Sci, 2023, 14, 979 doi: 10.1039/D2SC06343C[30] Meng G Y, Zhou J P, Han X S, et al. B‒N covalent bond embedded double hetero-[n]helicenes for pure red narrowband circularly polarized electroluminescence with high efficiency and stability. Adv Mater, 2024, 36, 2307420 doi: 10.1002/adma.202307420[31] Meng G Y, Zhou J P, Huang T Y, et al. B‒N/B‒O contained heterocycles as fusion locker in multi-resonance frameworks towards highly-efficient and stable ultra-narrowband emission. Angew Chem Int Ed, 2023, 62, e202309923 doi: 10.1002/anie.202309923[32] Tam B S T, Dong S C, Tang C W. Low-temperature conformal vacuum deposition of OLED devices using close-space sublimation. J Semicond, 2023, 44, 092602 doi: 10.1088/1674-4926/44/9/092602[33] Lu T, Chen F W. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem, 2012, 33, 580 doi: 10.1002/jcc.22885[34] Liu Z Y, Lu T, Chen Q X. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Electronic structure, electronic spectrum, and optical nonlinearity. Carbon, 2020, 165, 461 doi: 10.1016/j.carbon.2020.05.023[35] Meng G Y, Dai H Y, Wang Q, et al. High-efficiency and stable short-delayed fluorescence emitters with hybrid long- and short-range charge-transfer excitations. Nat Commun, 2023, 14, 2394 doi: 10.1038/s41467-023-38086-4[36] Ren B Y, Zuo C T, Sun Y G, et al. Intramolecular spatial charge transfer enhances TADF efficiency. J Semicond, 2021, 42, 050201 doi: 10.1088/1674-4926/42/5/050201[37] He X, Lou J L, Li B X, et al. Rational medium-range charge transfer strategy toward highly efficient violet-blue organic light-emitting diodes with narrowed emission. Adv Mater, 2024, 36, 2310417 doi: 10.1002/adma.202310417[38] Wei P C, Zhang D D, Duan L. Modulation of Förster and dexter interactions in single-emissive-layer all-fluorescent WOLEDs for improved efficiency and extended lifetime. Adv Funct Mater, 2020, 30, 1907083 doi: 10.1002/adfm.201907083[39] Huang T Y, Wang Q, Xiao S, et al. Simultaneously enhanced reverse intersystem crossing and radiative decay in thermally activated delayed fluorophors with multiple through-space charge transfers. Angew Chem Int Ed, 2021, 60, 23771 doi: 10.1002/anie.202109041[40] Jeon S O, Lee K H, Kim J S, et al. High-efficiency, long-lifetime deep-blue organic light-emitting diodes. Nat Photonics, 2021, 15, 208 doi: 10.1038/s41566-021-00763-5[41] Chan C Y, Tanaka M, Lee Y T, et al. Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission. Nat Photonics, 2021, 15, 203 doi: 10.1038/s41566-020-00745-z[42] Zhang Y W, Wei J B, Zhang D D, et al. Sterically wrapped multiple resonance fluorophors for suppression of concentration quenching and spectrum broadening. Angew Chem Int Ed, 2022, 61, e202113206 doi: 10.1002/anie.202113206[43] Jiang P C, Miao J S, Cao X S, et al. Quenching-resistant multiresonance TADF emitter realizes 40% external quantum efficiency in narrowband electroluminescence at high doping level. Adv Mater, 2022, 34, e2106954 doi: 10.1002/adma.202106954 -
Supplements
24040008Supplementary information.pdf -
Proportional views