Citation: |
Zhongming Chen, Qilin Hua, Guozhen Shen. Flexible ultrasound arrays with embossed polymer structures for medical imaging[J]. Journal of Semiconductors, 2024, 45(8): 080401. doi: 10.1088/1674-4926/24050042
****
Z M Chen, Q L Hua, and G Z Shen, Flexible ultrasound arrays with embossed polymer structures for medical imaging[J]. J. Semicond., 2024, 45(8), 080401 doi: 10.1088/1674-4926/24050042
|
Flexible ultrasound arrays with embossed polymer structures for medical imaging
DOI: 10.1088/1674-4926/24050042
More Information
-
References
[1] Hua Q, Shen G. Low-dimensional nanostructures for monolithic 3D-integrated flexible and stretchable electronics. Chemical Society Reviews, 2024, 53(3), 1316 doi: 10.1039/D3CS00918A[2] Hua Q, Shen G. A wearable sweat patch for non-invasive and wireless monitoring inflammatory status. Journal of Semiconductors, 2023, 44(10), 100401 doi: 10.1088/1674-4926/44/10/100401[3] Zhou J, Guo Y, Wang Y, et al. Flexible and wearable acoustic wave technologies. Applied Physics Reviews, 2023, 10(2), 021311 doi: 10.1063/5.0142470[4] Wells P N. Ultrasonic imaging of the human body. Reports on progress in physics, 1999, 62(5), 671 doi: 10.1088/0034-4885/62/5/201[5] Wei R, Hua Q, Shen G. Wireless multisite sensing systems for continuous physiological monitoring. Science China Materials, 2024 doi: 10.1007/s40843-024-2910-x[6] Fiering J O, Hultman P, Lee W, et al. High-density flexible interconnect for two-dimensional ultrasound arrays. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2000, 47(3), 764 doi: 10.1109/58.842067[7] Guan K, Chen D, Hua Q, et al. Sweat-permeable electronic patches by designing three-dimensional liquid diodes. Journal of Semiconductors, 2024, 45(7), 070401 doi: 10.1088/1674-4926/24040035[8] Hu H, Zhang C, Ding Y, et al. A review of structure engineering of strain-tolerant architectures for stretchable electronics. Small Methods, 2023, 7, 2300671 doi: 10.1002/smtd.202300671[9] Jiao R, Wang R, Wang Y, et al. Vertical serpentine interconnect-enabled stretchable and curved electronics. Microsystems & Nanoengineering, 2023, 9, 149 doi: 10.1038/s41378-023-00625-w[10] Nouri Moqadam A, Kazemi R. Design of a novel dual-polarized microwave sensor for human bone fracture detection using reactive impedance surfaces. Scientific Reports, 2023, 13, 10776 doi: 10.1038/s41598-023-38039-3[11] Wang C, Li X, Hu H, et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nature Biomedical Engineering, 2018, 2(9), 687 doi: 10.1038/s41551-018-0287-x[12] Hu H, Huang H, Li M, et al. A wearable cardiac ultrasound imager. Nature, 2023, 613(7945), 667 doi: 10.1038/s41586-022-05498-z[13] Wang C, Qi B, Lin M, et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nature Biomedical Engineering, 2021, 5(7), 749 doi: 10.1038/s41551-021-00763-4[14] Hu H, Ma Y, Gao X, et al. Stretchable ultrasonic arrays for the three-dimensional mapping of the modulus of deep tissue. Nature Biomedical Engineering, 2023, 7(10), 1321 doi: 10.1038/s41551-023-01038-w[15] Gao X, Chen X, Hu H, et al. A photoacoustic patch for three-dimensional imaging of hemoglobin and core temperature. Nature Communications, 2022, 13(1), 7757 doi: 10.1038/s41467-022-35455-3[16] Zhou Q, Lam K H, Zheng H, et al. Piezoelectric single crystal ultrasonic transducers for biomedical applications. Progress in materials science, 2014, 66, 87 doi: 10.1016/j.pmatsci.2014.06.001[17] van Neer P L M J, Peters L C J M, Verbeek R G F A, et al. Flexible large-area ultrasound arrays for medical applications made using embossed polymer structures. Nature Communications, 2024, 15(1), 2802 doi: 10.1038/s41467-024-47074-1 -
Proportional views