Citation: |
Xingyu Li, Li Tian, Jinshou Wang, Hui Liu. Facile construction of p-Si/n-SnO2 junction towards high performance self-powered UV photodetector[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/24090048
****
X Y Li, L Tian, J S Wang, and H Liu, Facile construction of p-Si/n-SnO2 junction towards high performance self-powered UV photodetector[J]. J. Semicond., 2025, 46(7), 072701 doi: 10.1088/1674-4926/24090048
|
Facile construction of p-Si/n-SnO2 junction towards high performance self-powered UV photodetector
DOI: 10.1088/1674-4926/24090048
CSTR: 32376.14.1674-4926.24090048
More Information-
Abstract
Recently, self-powered ultraviolet photodetectors (UV PDs) based on SnO2 have gained increasing interest due to its feature of working continuously without the need for external power sources. Nevertheless, the production of the majority of these existing UV PDs necessitates additional manufacturing stages or intricate processes. In this work, we present a facile, cost-effective approach for the fabrication of a self-powered UV PD based on p-Si/n-SnO2 junction. The self-powered device was achieved simply by integrating a p-Si substrate with a n-type SnO2 microbelt, which was synthesized via the chemical vapor deposition (CVD) method. The high-quality feature, coupled with the belt-like shape of the SnO2 microbelt enables the favorable contact between the n-type SnO2 and p-type silicon. The built-in electric field created at the interface endows the self-powered performance of the device. The p-Si/n-SnO2 junction photodetector demonstrated a high responsivity (0.12 mA/W), high light/dark current ratio (>103), and rapid response speed at zero bias. This method offers a practical way to develop cost-effective and high-performance self-powered UV PDs.-
Keywords:
- SnO2 microbelt,
- UV photodetector,
- CVD,
- self-powered
-
References
[1] Li Z Q, Yan T T, Fang X S. Low−dimensional wide−bandgap semiconductors for UV photodetectors. Nat Rev Mater, 2023, 8, 587 doi: 10.1038/s41578-023-00583-9[2] Cao F, Liu Y, Liu M, et al. Wide bandgap semiconductors for ultraviolet photodetectors: Approaches, applications, and prospects. Research, 2024, 7, 0385 doi: 10.34133/research.0385[3] Yang W F, Lei Y T, Jin Z W. Recent progress on solar blind deep ultraviolet photodetectors based on metal halide perovskites. J Mater Chem C, 2024, 12, 7497 doi: 10.1039/D4TC01152J[4] Ding J J, Zhao P F, Chen H X, et al. Ultraviolet photodetectors based on wide bandgap semiconductor: A review. App Phys A, 2024, 130(5), 350 doi: 10.1007/s00339-024-07501-y[5] Rogalski A, Bielecki Z, Mikołajczyk J, et al. Ultraviolet photodetectors: From photocathodes to low−dimensional solids. Sensors, 2023, 23(9), 4452 doi: 10.3390/s23094452[6] Zhou X Y, Lu Z H, Zhang L C, et al. Wide−bandgap all−inorganic lead−free perovskites for ultraviolet photodetectors. Nano Energy, 2023, 117, 108908 doi: 10.1016/j.nanoen.2023.108908[7] Al Fattah M F, Khan A A, Anabestani H, et al. Sensing of ultraviolet light: A transition from conventional to self−powered photodetector. Nanoscale, 2021, 13(37), 15526 doi: 10.1039/D1NR04561J[8] Lin H W, Jiang A, Xing S B, et al. Advances in self−powered ultraviolet photodetectors based on P−N heterojunction low−dimensional nanostructures. Nanomaterials, 2022, 12(6), 910 doi: 10.3390/nano12060910[9] Chen H F, Liu Z H, Zhang Y X, et al. 10 × 10 Ga2O3−based solar−blind UV detector array and imaging characteristic. J Semicond, 2024, 45(9), 092502 doi: 10.1088/1674-4926/24030005[10] Cai J, Xu X J, Su L X, et al. Self−Powered n−SnO2/p−CuZnS core−shell microwire UV photodetector with optimized performance. Adv Opt Mater, 2018, 6(15), 1800213 doi: 10.1002/adom.201800213[11] Wu C C, Du B W, Luo W, et al. Highly efficient and stable self−powered ultraviolet and deep−blue photodetector based on Cs2AgBiBr6/SnO2 heterojunction. Adv Opt Mater, 2018, 6(22), 1800811 doi: 10.1002/adom.201800811[12] Zhang Y, Xu W X, Xu X J, et al. Self−powered dual−color UV−green photodetectors based on SnO2 millimeter wire and microwires/CsPbBr3 particle heterojunctions. J Phys Chem Lett, 2019, 10(4), 836 doi: 10.1021/acs.jpclett.9b00154[13] Hao D D, Liu D P, Shen Y K, et al. Air−stable self−powered photodetectors based on lead−free CsBi3I10/SnO2 heterojunction for weak light detection. Adv Funct Mater, 2021, 31(21), 2100773 doi: 10.1002/adfm.202100773[14] Hu Z S, Zhang B Y, Zhang F J, et al. All solution−processed SnO2/1D−CsAg2I3 heterojunction for high−sensitivity self−powered visible−blind UV photodetector. Sci China Mater, 2023, 66(9), 3629 doi: 10.1007/s40843-023-2487-3[15] Athira M, Bharath S P, Angappane S. SnO2−NiO heterojunction based self−powered UV photodetectors. Sens Actuat A Phys, 2022, 340, 113540 doi: 10.1016/j.sna.2022.113540[16] Liu H, Zuo C L, Li Z L, et al. Highly crystallized tin dioxide microwires toward ultraviolet photodetector and humidity sensor with high performances. Adv Electron Mater, 2021, 7(11), 2100706 doi: 10.1002/aelm.202100706[17] Cao F, Su L, Yan T T, et al. Pine−branch−like SnO2/ZnO heterostructure with suppressed dark current and enhanced on/off ratio for visible−blind UV imaging. Adv Electron Mater, 2022, 8(7), 2101373 doi: 10.1002/aelm.202101373[18] Praveen S, Veeralingam S, Badhulika S. A flexible self−powered UV photodetector and optical UV filter based on β−Bi2O3/SnO2 quantum dots schottky heterojunction. Adv Mater Interfaces, 2021, 8(15), 2100373 doi: 10.1002/admi.202100373[19] Ling C C, Guo T C, Lu W B, et al. Ultrahigh broadband photoresponse of SnO2 nanoparticle thin film/SiO2/p-Si heterojunction. Nanoscale, 2017, 9(25), 8848 doi: 10.1039/C7NR03437G[20] Yuvaraja S, Kumar V, Dhasmana H, et al. Ultraviolet detection properties of electrodeposited n−SnO2 modified p-Si nanowires heterojunction photodiode. J Mater Sci Mater Electron, 2019, 30(8), 7618 doi: 10.1007/s10854-019-01077-7[21] Ozel K, Yildiz A. A self−powered ultraviolet photodetector with ultrahigh photoresponsivity (208 mA W−1) based on SnO2 nanostructures/Si heterojunctions. Phys Status Solidi R, 2021, 15, 2100085 doi: 10.1002/pssr.202100085[22] Ozel K, Yildiz A. The potential barrier−dependent carrier transport mechanism in n−SnO2/p-Si heterojunctions. Sens and Actuat A Phys, 2021, 332, 113141 doi: 10.1016/j.sna.2021.113141[23] Ozel K, Yildiz A. Estimation of maximum photoresponsivity of n−SnO2/p-Si heterojunction−based UV photodetectors. Phys Status Solidi R, 2022, 16(2), 2100490 doi: 10.1002/pssr.202100490[24] Barreca D, Garon S, Tondello E, et al. SnO2 nanocrystalline thin films by XPS. Surf Sci Spectra, 2000, 7(2), 81 doi: 10.1116/1.1288177[25] Kwoka M, Ottaviano L, Passacantando M, et al. XPS study of the surface chemistry of L−CVD SnO2 thin films after oxidation. Thin Solid Films, 2005, 490(1), 36 doi: 10.1016/j.tsf.2005.04.014[26] Stranick M A, Moskwa A. SnO2 by XPS. Surf Sci Spectra, 1993, 2(1), 50 doi: 10.1116/1.1247724[27] Liu B H, Li M K, Fu W, et al. High−performance self−driven ultraviolet photodetector based on SnO2 p−n homojunction. Opt Mater, 2022, 129, 112571 doi: 10.1016/j.optmat.2022.112571[28] Kumar M, Saravanan A, Joshi S A, et al. High−performance self−powered UV photodetectors using SnO2 thin film by reactive magnetron sputtering. Sens and Actuat A Phys, 2024, 373, 115441 doi: 10.1016/j.sna.2024.115441[29] Xu T, Jiang M M, Wan P, et al. High−performance self−powered ultraviolet photodetector in SnO2 microwire/p−GaN heterojunction using graphene as charge collection medium. J Mater Sci Technol, 2023, 138, 183 doi: 10.1016/j.jmst.2022.07.050[30] Lee W J, Lee S S, Sohn S H, et al. Persistent photoconductivity control in Zn−doped SnO2 thin films for the performance enhancement of solar−blind ultraviolet photodetectors. ACS Photonics, 2023, 10, 3901 doi: 10.1021/acsphotonics.3c00687[31] Yang B, Guo P, Hao D D, et al. Self−powered photodetectors based on CsPbBr3 quantum dots/organic semiconductors/SnO2 heterojunction for weak light detection. Sci China Mater, 2023, 66(2), 716 doi: 10.1007/s40843-022-2155-0[32] Song P L, Zhang Y, Wang J S, et al. Novel two−dimensional NbWO6 nanosheets for high performance UV photodetectors. Adv Electron Mater, 2023, 10(2), 2300462 doi: 10.1002/aelm[33] Wang H B, Chen H Y, Li L, et al. High responsivity and high rejection ratio of self−powered solar−blind ultraviolet photodetector based on PEDOT: PSS/β−Ga2O3 organic/inorganic p−n junction. J Phys Chem Lett, 2019, 10(21), 6850 doi: 10.1021/acs.jpclett.9b02793[34] Zhang Y, Yao J, Wang L, et al. High−stability two−dimensional perovskite LaNb2O7 for high−performance wide−temperature (80–780 K) UV light detection and human motion detection. InfoMat, 2025, 7(1), e12614 doi: 10.1002/inf2.12614[35] Fan X S, Hong E L, Wang P X, et al. Controlled growth of 2D−3D perovskite lateral heterostructures for wavelength−tunable light communication. Adv Funct Mater, 2024, 2415491 doi: 10.1002/adfm.202415491[36] Deng X L, Li Z Q, Cao F, et al. Woven fibrous photodetectors forscalable UV optical communication device. Adv Funct Mater, 2023, 33(23), 2213334 doi: 10.1002/adfm.202213334[37] Deng M, Li Z Q, Deng X, L et al. Wafer−scale heterogeneous integration of self−powered lead−free metal halide UV photodetectors with ultrahigh stability and homogeneity. J Mater Sci Technol, 2023, 164, 150 doi: 10.1016/j.jmst.2023.05.007[38] Russo P, Xiao M, Liang R, et al. UV−induced multilevel current amplification memory effect in zinc oxide rods resistive switching devices. Adv Funct Mater, 2018, 28(13), 1706230 doi: 10.1002/adfm.201706230[39] Xiao W, Shan L B, Zhang H T, et al. High photosensitivity light−controlled planar ZnO artificial synapse for neuromorphic computing. Nanoscale, 2021, 13(4), 2502 doi: 10.1039/D0NR08082A[40] Yang W, Hu K, Teng F, et al. High−performance silicon−compatible large−area UV−to−visible broadband photodetector based on integrated lattice−matched type II Se/n-Si heterojunctions. Nano Lett, 2018, 18(8), 4697 doi: 10.1021/acs.nanolett.8b00988[41] Zhang Z Y, Shao C L, Li X H, et al. Electrospun nanofibers of ZnO−SnO2 heterojunction with high photocatalytic activity. J Phys Chem C, 2010, 114(17), 7920 doi: 10.1021/jp100262q -
Proportional views