J. Semicond. >  In Press

ARTICLES

Facile construction of p-Si/n-SnO2 junction towards high performance self-powered UV photodetector

Xingyu Li, Li Tian, Jinshou Wang and Hui Liu

+ Author Affiliations

 Corresponding author: Hui Liu, liuhui_career@163.com

DOI: 10.1088/1674-4926/24090048CSTR: 32376.14.1674-4926.24090048

PDF

Turn off MathJax

Abstract: Recently, self-powered ultraviolet photodetectors (UV PDs) based on SnO2 have gained increasing interest due to its feature of working continuously without the need for external power sources. Nevertheless, the production of the majority of these existing UV PDs necessitates additional manufacturing stages or intricate processes. In this work, we present a facile, cost-effective approach for the fabrication of a self-powered UV PD based on p-Si/n-SnO2 junction. The self-powered device was achieved simply by integrating a p-Si substrate with a n-type SnO2 microbelt, which was synthesized via the chemical vapor deposition (CVD) method. The high-quality feature, coupled with the belt-like shape of the SnO2 microbelt enables the favorable contact between the n-type SnO2 and p-type silicon. The built-in electric field created at the interface endows the self-powered performance of the device. The p-Si/n-SnO2 junction photodetector demonstrated a high responsivity (0.12 mA/W), high light/dark current ratio (>103), and rapid response speed at zero bias. This method offers a practical way to develop cost-effective and high-performance self-powered UV PDs.

Key words: SnO2 microbeltUV photodetectorCVDself-powered



[1]
Li Z Q, Yan T T, Fang X S. Low−dimensional wide−bandgap semiconductors for UV photodetectors. Nat Rev Mater, 2023, 8, 587 doi: 10.1038/s41578-023-00583-9
[2]
Cao F, Liu Y, Liu M, et al. Wide bandgap semiconductors for ultraviolet photodetectors: Approaches, applications, and prospects. Research, 2024, 7, 0385 doi: 10.34133/research.0385
[3]
Yang W F, Lei Y T, Jin Z W. Recent progress on solar blind deep ultraviolet photodetectors based on metal halide perovskites. J Mater Chem C, 2024, 12, 7497 doi: 10.1039/D4TC01152J
[4]
Ding J J, Zhao P F, Chen H X, et al. Ultraviolet photodetectors based on wide bandgap semiconductor: A review. App Phys A, 2024, 130(5), 350 doi: 10.1007/s00339-024-07501-y
[5]
Rogalski A, Bielecki Z, Mikołajczyk J, et al. Ultraviolet photodetectors: From photocathodes to low−dimensional solids. Sensors, 2023, 23(9), 4452 doi: 10.3390/s23094452
[6]
Zhou X Y, Lu Z H, Zhang L C, et al. Wide−bandgap all−inorganic lead−free perovskites for ultraviolet photodetectors. Nano Energy, 2023, 117, 108908 doi: 10.1016/j.nanoen.2023.108908
[7]
Al Fattah M F, Khan A A, Anabestani H, et al. Sensing of ultraviolet light: A transition from conventional to self−powered photodetector. Nanoscale, 2021, 13(37), 15526 doi: 10.1039/D1NR04561J
[8]
Lin H W, Jiang A, Xing S B, et al. Advances in self−powered ultraviolet photodetectors based on P−N heterojunction low−dimensional nanostructures. Nanomaterials, 2022, 12(6), 910 doi: 10.3390/nano12060910
[9]
Chen H F, Liu Z H, Zhang Y X, et al. 10 × 10 Ga2O3−based solar−blind UV detector array and imaging characteristic. J Semicond, 2024, 45(9), 092502 doi: 10.1088/1674-4926/24030005
[10]
Cai J, Xu X J, Su L X, et al. Self−Powered n−SnO2/p−CuZnS core−shell microwire UV photodetector with optimized performance. Adv Opt Mater, 2018, 6(15), 1800213 doi: 10.1002/adom.201800213
[11]
Wu C C, Du B W, Luo W, et al. Highly efficient and stable self−powered ultraviolet and deep−blue photodetector based on Cs2AgBiBr6/SnO2 heterojunction. Adv Opt Mater, 2018, 6(22), 1800811 doi: 10.1002/adom.201800811
[12]
Zhang Y, Xu W X, Xu X J, et al. Self−powered dual−color UV−green photodetectors based on SnO2 millimeter wire and microwires/CsPbBr3 particle heterojunctions. J Phys Chem Lett, 2019, 10(4), 836 doi: 10.1021/acs.jpclett.9b00154
[13]
Hao D D, Liu D P, Shen Y K, et al. Air−stable self−powered photodetectors based on lead−free CsBi3I10/SnO2 heterojunction for weak light detection. Adv Funct Mater, 2021, 31(21), 2100773 doi: 10.1002/adfm.202100773
[14]
Hu Z S, Zhang B Y, Zhang F J, et al. All solution−processed SnO2/1D−CsAg2I3 heterojunction for high−sensitivity self−powered visible−blind UV photodetector. Sci China Mater, 2023, 66(9), 3629 doi: 10.1007/s40843-023-2487-3
[15]
Athira M, Bharath S P, Angappane S. SnO2−NiO heterojunction based self−powered UV photodetectors. Sens Actuat A Phys, 2022, 340, 113540 doi: 10.1016/j.sna.2022.113540
[16]
Liu H, Zuo C L, Li Z L, et al. Highly crystallized tin dioxide microwires toward ultraviolet photodetector and humidity sensor with high performances. Adv Electron Mater, 2021, 7(11), 2100706 doi: 10.1002/aelm.202100706
[17]
Cao F, Su L, Yan T T, et al. Pine−branch−like SnO2/ZnO heterostructure with suppressed dark current and enhanced on/off ratio for visible−blind UV imaging. Adv Electron Mater, 2022, 8(7), 2101373 doi: 10.1002/aelm.202101373
[18]
Praveen S, Veeralingam S, Badhulika S. A flexible self−powered UV photodetector and optical UV filter based on β−Bi2O3/SnO2 quantum dots schottky heterojunction. Adv Mater Interfaces, 2021, 8(15), 2100373 doi: 10.1002/admi.202100373
[19]
Ling C C, Guo T C, Lu W B, et al. Ultrahigh broadband photoresponse of SnO2 nanoparticle thin film/SiO2/p-Si heterojunction. Nanoscale, 2017, 9(25), 8848 doi: 10.1039/C7NR03437G
[20]
Yuvaraja S, Kumar V, Dhasmana H, et al. Ultraviolet detection properties of electrodeposited n−SnO2 modified p-Si nanowires heterojunction photodiode. J Mater Sci Mater Electron, 2019, 30(8), 7618 doi: 10.1007/s10854-019-01077-7
[21]
Ozel K, Yildiz A. A self−powered ultraviolet photodetector with ultrahigh photoresponsivity (208 mA W−1) based on SnO2 nanostructures/Si heterojunctions. Phys Status Solidi R, 2021, 15, 2100085 doi: 10.1002/pssr.202100085
[22]
Ozel K, Yildiz A. The potential barrier−dependent carrier transport mechanism in n−SnO2/p-Si heterojunctions. Sens and Actuat A Phys, 2021, 332, 113141 doi: 10.1016/j.sna.2021.113141
[23]
Ozel K, Yildiz A. Estimation of maximum photoresponsivity of n−SnO2/p-Si heterojunction−based UV photodetectors. Phys Status Solidi R, 2022, 16(2), 2100490 doi: 10.1002/pssr.202100490
[24]
Barreca D, Garon S, Tondello E, et al. SnO2 nanocrystalline thin films by XPS. Surf Sci Spectra, 2000, 7(2), 81 doi: 10.1116/1.1288177
[25]
Kwoka M, Ottaviano L, Passacantando M, et al. XPS study of the surface chemistry of L−CVD SnO2 thin films after oxidation. Thin Solid Films, 2005, 490(1), 36 doi: 10.1016/j.tsf.2005.04.014
[26]
Stranick M A, Moskwa A. SnO2 by XPS. Surf Sci Spectra, 1993, 2(1), 50 doi: 10.1116/1.1247724
[27]
Liu B H, Li M K, Fu W, et al. High−performance self−driven ultraviolet photodetector based on SnO2 p−n homojunction. Opt Mater, 2022, 129, 112571 doi: 10.1016/j.optmat.2022.112571
[28]
Kumar M, Saravanan A, Joshi S A, et al. High−performance self−powered UV photodetectors using SnO2 thin film by reactive magnetron sputtering. Sens and Actuat A Phys, 2024, 373, 115441 doi: 10.1016/j.sna.2024.115441
[29]
Xu T, Jiang M M, Wan P, et al. High−performance self−powered ultraviolet photodetector in SnO2 microwire/p−GaN heterojunction using graphene as charge collection medium. J Mater Sci Technol, 2023, 138, 183 doi: 10.1016/j.jmst.2022.07.050
[30]
Lee W J, Lee S S, Sohn S H, et al. Persistent photoconductivity control in Zn−doped SnO2 thin films for the performance enhancement of solar−blind ultraviolet photodetectors. ACS Photonics, 2023, 10, 3901 doi: 10.1021/acsphotonics.3c00687
[31]
Yang B, Guo P, Hao D D, et al. Self−powered photodetectors based on CsPbBr3 quantum dots/organic semiconductors/SnO2 heterojunction for weak light detection. Sci China Mater, 2023, 66(2), 716 doi: 10.1007/s40843-022-2155-0
[32]
Song P L, Zhang Y, Wang J S, et al. Novel two−dimensional NbWO6 nanosheets for high performance UV photodetectors. Adv Electron Mater, 2023, 10(2), 2300462 doi: 10.1002/aelm
[33]
Wang H B, Chen H Y, Li L, et al. High responsivity and high rejection ratio of self−powered solar−blind ultraviolet photodetector based on PEDOT: PSS/β−Ga2O3 organic/inorganic p−n junction. J Phys Chem Lett, 2019, 10(21), 6850 doi: 10.1021/acs.jpclett.9b02793
[34]
Zhang Y, Yao J, Wang L, et al. High−stability two−dimensional perovskite LaNb2O7 for high−performance wide−temperature (80–780 K) UV light detection and human motion detection. InfoMat, 2025, 7(1), e12614 doi: 10.1002/inf2.12614
[35]
Fan X S, Hong E L, Wang P X, et al. Controlled growth of 2D−3D perovskite lateral heterostructures for wavelength−tunable light communication. Adv Funct Mater, 2024, 2415491 doi: 10.1002/adfm.202415491
[36]
Deng X L, Li Z Q, Cao F, et al. Woven fibrous photodetectors forscalable UV optical communication device. Adv Funct Mater, 2023, 33(23), 2213334 doi: 10.1002/adfm.202213334
[37]
Deng M, Li Z Q, Deng X, L et al. Wafer−scale heterogeneous integration of self−powered lead−free metal halide UV photodetectors with ultrahigh stability and homogeneity. J Mater Sci Technol, 2023, 164, 150 doi: 10.1016/j.jmst.2023.05.007
[38]
Russo P, Xiao M, Liang R, et al. UV−induced multilevel current amplification memory effect in zinc oxide rods resistive switching devices. Adv Funct Mater, 2018, 28(13), 1706230 doi: 10.1002/adfm.201706230
[39]
Xiao W, Shan L B, Zhang H T, et al. High photosensitivity light−controlled planar ZnO artificial synapse for neuromorphic computing. Nanoscale, 2021, 13(4), 2502 doi: 10.1039/D0NR08082A
[40]
Yang W, Hu K, Teng F, et al. High−performance silicon−compatible large−area UV−to−visible broadband photodetector based on integrated lattice−matched type II Se/n-Si heterojunctions. Nano Lett, 2018, 18(8), 4697 doi: 10.1021/acs.nanolett.8b00988
[41]
Zhang Z Y, Shao C L, Li X H, et al. Electrospun nanofibers of ZnO−SnO2 heterojunction with high photocatalytic activity. J Phys Chem C, 2010, 114(17), 7920 doi: 10.1021/jp100262q
Fig. 1.  (Color online) (a) A schematic diagram of the SnO2 microbelt-based UV PD. (b) Optical image of the as prepared SnO2 microbelt and (c) SnO2 microbelt based UV PD.

Fig. 2.  (Color online) Morphology and structure of SnO2 microbelts. (a)−(c) SEM images at different magnifications of SnO2 microbelts (Inset in Fig. 1(a) is the optical image of as-prepared SnO2 samples). (d) XRD pattern of a single SnO2 microbelt.

Fig. 3.  (Color online) XPS and UV−vis spectra of SnO2 microbelts. (a) The survey spectrum, high-resolution X-ray photoelectron spectra for (b) Sn 3d core level, (c) O 1s core level. (d) The UV−vis absorption spectrum. The inset in (d) is a plot of (αhν)2 versus for the SnO2 microbelts, with Eg representing the optical band gap.

Fig. 4.  (Color online) Photoelectrical performances of the single SnO2 microbelt based photodetector. (a) The IV curves under dark, and under illumination with 500 and 300 nm in ambient air, (b) It curve under 3 V and 300 nm (0.311 mW∙cm−2), (c) instant photo response and (d) spectral photo response ranging 250 to 500 nm (Inset: a semi-log plot showing the responsivity as a function of wavelength).

Fig. 5.  (Color online) Photoelectrical performances of the self-powered p-Si/n-SnO2 UV PD. (a) Illumination area of single SnO2 microbelt and p-Si/n-SnO2 based UV PD. (b) IV curves under dark conditions and under exposure to 500 and 300 nm UV light in ambient conditions, (c) It curve at 300 nm and 3 V, (d) instant photo response and (e) spectral photo response from 250 to 500 nm at a basis of 3 V.

Fig. 6.  (Color online) Self−powered performances of the SnO2−p-Si UV PD. (a) It curve at 300 nm and 0 V, (b) spectral photo response from 250 nm to 700 nm at a basis of 0 V. (Inset: a plausible response mechanism for the p-Si/n-SnO2 heterojunction device).

Table 1.   Comparison of the key parameters and fabrication methods of SnO2-based self-powered photodetectors against those of other nanomaterial counterparts.

Photodetectors Preparation
methods1
Wavelength
(nm)
Dark current Rise time Decay time Reference
n-SnO2/p−CuZnS CVD + CBD 300 0.1 pA at 0 V 45 µs at 0 V 1.17 ms at 0 V [10]
SnO2/Cs2AgBiBr6 SC + SC 365 9.5 nA at 0 V 2 ms at 0 V 2 ms at 0 V [11]
SnO2/CsPbBr3 CVD + DP 300 2 pA at 0 V [12]
SnO2/CsBi3I10 SC + SC 650 1.9 pA at 0 V 7.8 µs at 0 V 8.8 µs at 0 V [13]
SnO2/NiO EBE + MS 365 7.3 pA at 5 V 89 ms at 0 V 89 ms at 0 V [15]
SnO2/CuI CVD + TV 300 0.1 pA at 0 V 0.3 ms at 0 V 1.1 ms at 0 V [16]
β-Bi2O3/SnO2 ES + HT 365 0.6 nA at 0 V ~0.92 s at 0 V ~0.92 s at 0 V [18]
SnO2/p-Si CVD 300 0.04 pA at 0 V 150 μs at 1 V 3.3 ms at 1 V This work
1 CBD, chemical bath deposition; SC, spin coating; TA, thermal annealing; DP, drop pyrolysis; EBE, electron beam evaporation; MS, magnetron sputtering; STO, Sn thermal oxidation; PLD, pulsed laser deposition; ES, electrospinning; HT, hydrothermal; TV, thermal evaporation.
DownLoad: CSV
[1]
Li Z Q, Yan T T, Fang X S. Low−dimensional wide−bandgap semiconductors for UV photodetectors. Nat Rev Mater, 2023, 8, 587 doi: 10.1038/s41578-023-00583-9
[2]
Cao F, Liu Y, Liu M, et al. Wide bandgap semiconductors for ultraviolet photodetectors: Approaches, applications, and prospects. Research, 2024, 7, 0385 doi: 10.34133/research.0385
[3]
Yang W F, Lei Y T, Jin Z W. Recent progress on solar blind deep ultraviolet photodetectors based on metal halide perovskites. J Mater Chem C, 2024, 12, 7497 doi: 10.1039/D4TC01152J
[4]
Ding J J, Zhao P F, Chen H X, et al. Ultraviolet photodetectors based on wide bandgap semiconductor: A review. App Phys A, 2024, 130(5), 350 doi: 10.1007/s00339-024-07501-y
[5]
Rogalski A, Bielecki Z, Mikołajczyk J, et al. Ultraviolet photodetectors: From photocathodes to low−dimensional solids. Sensors, 2023, 23(9), 4452 doi: 10.3390/s23094452
[6]
Zhou X Y, Lu Z H, Zhang L C, et al. Wide−bandgap all−inorganic lead−free perovskites for ultraviolet photodetectors. Nano Energy, 2023, 117, 108908 doi: 10.1016/j.nanoen.2023.108908
[7]
Al Fattah M F, Khan A A, Anabestani H, et al. Sensing of ultraviolet light: A transition from conventional to self−powered photodetector. Nanoscale, 2021, 13(37), 15526 doi: 10.1039/D1NR04561J
[8]
Lin H W, Jiang A, Xing S B, et al. Advances in self−powered ultraviolet photodetectors based on P−N heterojunction low−dimensional nanostructures. Nanomaterials, 2022, 12(6), 910 doi: 10.3390/nano12060910
[9]
Chen H F, Liu Z H, Zhang Y X, et al. 10 × 10 Ga2O3−based solar−blind UV detector array and imaging characteristic. J Semicond, 2024, 45(9), 092502 doi: 10.1088/1674-4926/24030005
[10]
Cai J, Xu X J, Su L X, et al. Self−Powered n−SnO2/p−CuZnS core−shell microwire UV photodetector with optimized performance. Adv Opt Mater, 2018, 6(15), 1800213 doi: 10.1002/adom.201800213
[11]
Wu C C, Du B W, Luo W, et al. Highly efficient and stable self−powered ultraviolet and deep−blue photodetector based on Cs2AgBiBr6/SnO2 heterojunction. Adv Opt Mater, 2018, 6(22), 1800811 doi: 10.1002/adom.201800811
[12]
Zhang Y, Xu W X, Xu X J, et al. Self−powered dual−color UV−green photodetectors based on SnO2 millimeter wire and microwires/CsPbBr3 particle heterojunctions. J Phys Chem Lett, 2019, 10(4), 836 doi: 10.1021/acs.jpclett.9b00154
[13]
Hao D D, Liu D P, Shen Y K, et al. Air−stable self−powered photodetectors based on lead−free CsBi3I10/SnO2 heterojunction for weak light detection. Adv Funct Mater, 2021, 31(21), 2100773 doi: 10.1002/adfm.202100773
[14]
Hu Z S, Zhang B Y, Zhang F J, et al. All solution−processed SnO2/1D−CsAg2I3 heterojunction for high−sensitivity self−powered visible−blind UV photodetector. Sci China Mater, 2023, 66(9), 3629 doi: 10.1007/s40843-023-2487-3
[15]
Athira M, Bharath S P, Angappane S. SnO2−NiO heterojunction based self−powered UV photodetectors. Sens Actuat A Phys, 2022, 340, 113540 doi: 10.1016/j.sna.2022.113540
[16]
Liu H, Zuo C L, Li Z L, et al. Highly crystallized tin dioxide microwires toward ultraviolet photodetector and humidity sensor with high performances. Adv Electron Mater, 2021, 7(11), 2100706 doi: 10.1002/aelm.202100706
[17]
Cao F, Su L, Yan T T, et al. Pine−branch−like SnO2/ZnO heterostructure with suppressed dark current and enhanced on/off ratio for visible−blind UV imaging. Adv Electron Mater, 2022, 8(7), 2101373 doi: 10.1002/aelm.202101373
[18]
Praveen S, Veeralingam S, Badhulika S. A flexible self−powered UV photodetector and optical UV filter based on β−Bi2O3/SnO2 quantum dots schottky heterojunction. Adv Mater Interfaces, 2021, 8(15), 2100373 doi: 10.1002/admi.202100373
[19]
Ling C C, Guo T C, Lu W B, et al. Ultrahigh broadband photoresponse of SnO2 nanoparticle thin film/SiO2/p-Si heterojunction. Nanoscale, 2017, 9(25), 8848 doi: 10.1039/C7NR03437G
[20]
Yuvaraja S, Kumar V, Dhasmana H, et al. Ultraviolet detection properties of electrodeposited n−SnO2 modified p-Si nanowires heterojunction photodiode. J Mater Sci Mater Electron, 2019, 30(8), 7618 doi: 10.1007/s10854-019-01077-7
[21]
Ozel K, Yildiz A. A self−powered ultraviolet photodetector with ultrahigh photoresponsivity (208 mA W−1) based on SnO2 nanostructures/Si heterojunctions. Phys Status Solidi R, 2021, 15, 2100085 doi: 10.1002/pssr.202100085
[22]
Ozel K, Yildiz A. The potential barrier−dependent carrier transport mechanism in n−SnO2/p-Si heterojunctions. Sens and Actuat A Phys, 2021, 332, 113141 doi: 10.1016/j.sna.2021.113141
[23]
Ozel K, Yildiz A. Estimation of maximum photoresponsivity of n−SnO2/p-Si heterojunction−based UV photodetectors. Phys Status Solidi R, 2022, 16(2), 2100490 doi: 10.1002/pssr.202100490
[24]
Barreca D, Garon S, Tondello E, et al. SnO2 nanocrystalline thin films by XPS. Surf Sci Spectra, 2000, 7(2), 81 doi: 10.1116/1.1288177
[25]
Kwoka M, Ottaviano L, Passacantando M, et al. XPS study of the surface chemistry of L−CVD SnO2 thin films after oxidation. Thin Solid Films, 2005, 490(1), 36 doi: 10.1016/j.tsf.2005.04.014
[26]
Stranick M A, Moskwa A. SnO2 by XPS. Surf Sci Spectra, 1993, 2(1), 50 doi: 10.1116/1.1247724
[27]
Liu B H, Li M K, Fu W, et al. High−performance self−driven ultraviolet photodetector based on SnO2 p−n homojunction. Opt Mater, 2022, 129, 112571 doi: 10.1016/j.optmat.2022.112571
[28]
Kumar M, Saravanan A, Joshi S A, et al. High−performance self−powered UV photodetectors using SnO2 thin film by reactive magnetron sputtering. Sens and Actuat A Phys, 2024, 373, 115441 doi: 10.1016/j.sna.2024.115441
[29]
Xu T, Jiang M M, Wan P, et al. High−performance self−powered ultraviolet photodetector in SnO2 microwire/p−GaN heterojunction using graphene as charge collection medium. J Mater Sci Technol, 2023, 138, 183 doi: 10.1016/j.jmst.2022.07.050
[30]
Lee W J, Lee S S, Sohn S H, et al. Persistent photoconductivity control in Zn−doped SnO2 thin films for the performance enhancement of solar−blind ultraviolet photodetectors. ACS Photonics, 2023, 10, 3901 doi: 10.1021/acsphotonics.3c00687
[31]
Yang B, Guo P, Hao D D, et al. Self−powered photodetectors based on CsPbBr3 quantum dots/organic semiconductors/SnO2 heterojunction for weak light detection. Sci China Mater, 2023, 66(2), 716 doi: 10.1007/s40843-022-2155-0
[32]
Song P L, Zhang Y, Wang J S, et al. Novel two−dimensional NbWO6 nanosheets for high performance UV photodetectors. Adv Electron Mater, 2023, 10(2), 2300462 doi: 10.1002/aelm
[33]
Wang H B, Chen H Y, Li L, et al. High responsivity and high rejection ratio of self−powered solar−blind ultraviolet photodetector based on PEDOT: PSS/β−Ga2O3 organic/inorganic p−n junction. J Phys Chem Lett, 2019, 10(21), 6850 doi: 10.1021/acs.jpclett.9b02793
[34]
Zhang Y, Yao J, Wang L, et al. High−stability two−dimensional perovskite LaNb2O7 for high−performance wide−temperature (80–780 K) UV light detection and human motion detection. InfoMat, 2025, 7(1), e12614 doi: 10.1002/inf2.12614
[35]
Fan X S, Hong E L, Wang P X, et al. Controlled growth of 2D−3D perovskite lateral heterostructures for wavelength−tunable light communication. Adv Funct Mater, 2024, 2415491 doi: 10.1002/adfm.202415491
[36]
Deng X L, Li Z Q, Cao F, et al. Woven fibrous photodetectors forscalable UV optical communication device. Adv Funct Mater, 2023, 33(23), 2213334 doi: 10.1002/adfm.202213334
[37]
Deng M, Li Z Q, Deng X, L et al. Wafer−scale heterogeneous integration of self−powered lead−free metal halide UV photodetectors with ultrahigh stability and homogeneity. J Mater Sci Technol, 2023, 164, 150 doi: 10.1016/j.jmst.2023.05.007
[38]
Russo P, Xiao M, Liang R, et al. UV−induced multilevel current amplification memory effect in zinc oxide rods resistive switching devices. Adv Funct Mater, 2018, 28(13), 1706230 doi: 10.1002/adfm.201706230
[39]
Xiao W, Shan L B, Zhang H T, et al. High photosensitivity light−controlled planar ZnO artificial synapse for neuromorphic computing. Nanoscale, 2021, 13(4), 2502 doi: 10.1039/D0NR08082A
[40]
Yang W, Hu K, Teng F, et al. High−performance silicon−compatible large−area UV−to−visible broadband photodetector based on integrated lattice−matched type II Se/n-Si heterojunctions. Nano Lett, 2018, 18(8), 4697 doi: 10.1021/acs.nanolett.8b00988
[41]
Zhang Z Y, Shao C L, Li X H, et al. Electrospun nanofibers of ZnO−SnO2 heterojunction with high photocatalytic activity. J Phys Chem C, 2010, 114(17), 7920 doi: 10.1021/jp100262q
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 175 Times PDF downloads: 19 Times Cited by: 0 Times

    History

    Received: 07 December 2024 Revised: 27 January 2025 Online: Accepted Manuscript: 20 February 2025Uncorrected proof: 03 April 2025

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xingyu Li, Li Tian, Jinshou Wang, Hui Liu. Facile construction of p-Si/n-SnO2 junction towards high performance self-powered UV photodetector[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/24090048 ****X Y Li, L Tian, J S Wang, and H Liu, Facile construction of p-Si/n-SnO2 junction towards high performance self-powered UV photodetector[J]. J. Semicond., 2025, 46(7), 072701 doi: 10.1088/1674-4926/24090048
      Citation:
      Xingyu Li, Li Tian, Jinshou Wang, Hui Liu. Facile construction of p-Si/n-SnO2 junction towards high performance self-powered UV photodetector[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/24090048 ****
      X Y Li, L Tian, J S Wang, and H Liu, Facile construction of p-Si/n-SnO2 junction towards high performance self-powered UV photodetector[J]. J. Semicond., 2025, 46(7), 072701 doi: 10.1088/1674-4926/24090048

      Facile construction of p-Si/n-SnO2 junction towards high performance self-powered UV photodetector

      DOI: 10.1088/1674-4926/24090048
      CSTR: 32376.14.1674-4926.24090048
      More Information
      • Xingyu Li received her BS degree from Shandong University of Aeronautics of Polymer science in 2022. He is currently a postgraduate at School of Chemistry and Environmental Engineering in Hubei Minzu University. His research focuses on SnO2 photodetectors
      • Hui Liu received the Ph.D. degree from Fudan University in 2015. He is currently a Lecture at School of Chemistry and Environmental Engineering in Hubei Minzu University. His research interests focus on SnO2 material and devices
      • Corresponding author: liuhui_career@163.com
      • Received Date: 2024-12-07
      • Revised Date: 2025-01-27
      • Available Online: 2025-02-20

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return