Citation: |
Yapeng Tang, Bo’ao Xiao, Dingjun Wu, Hai Zhou. Multi-functional PbI2 enables self-driven perovskite nanowire photodetector with ultra-weak light detection ability[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/24110016
****
Y P Tang, B A Xiao, D J Wu, and H Zhou, Multi-functional PbI2 enables self-driven perovskite nanowire photodetector with ultra-weak light detection ability[J]. J. Semicond., 2025, 46(5), 052801 doi: 10.1088/1674-4926/24110016
|
Multi-functional PbI2 enables self-driven perovskite nanowire photodetector with ultra-weak light detection ability
DOI: 10.1088/1674-4926/24110016
CSTR: 32376.14.1674-4926.24110016
More Information-
Abstract
High-performance perovskite photodetectors with self-driven characteristic usually need electron/hole transport layers to extract carriers. However, these devices with transport layer structure are prone to result in a poor perovskite/transport layer interface, which restricts the performance and stability of the device. To solve this problem, this work reports a novel device structure in which perovskite nanowires are in-situ prepared on PbI2, which serves as both a reaction raw material and efficient carrier extraction layer. By optimizing the thickness of PbI2, nanowire growth time, and ion exchange time, a self-driven photodetector with an ITO/PbI2/CsPbBr3/carbon structure is constructed. The optimized device achieves excellent performance with the responsivity of 0.33 A/W, the detectivity of as high as 3.52 × 1013 Jones. Furthermore, the device can detect the light with its optical power lowered to 0.1 nW/cm2. This research provides a new method for preparing perovskite nano/micro devices with simple structure but excellent performance.-
Keywords:
- nanowire,
- PbI2,
- perovskite,
- photodetector
-
References
[1] Zhu H W, Teale S, Lintangpradipto M N, et al. Long-term operating stability in perovskite photovoltaics. Nat Rev Mater, 2023, 8, 569 doi: 10.1038/s41578-023-00582-w[2] Zhang L W, Zhou H, Chen Y B, et al. Spontaneous crystallization of strongly confined CsSnxPb1-xI3 perovskite colloidal quantum dots at room temperature. Nat Commun, 2024, 15, 1609 doi: 10.1038/s41467-024-45945-1[3] Lin R X, Wang Y R, Lu Q W, et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature, 2023, 620, 994 doi: 10.1038/s41586-023-06278-z[4] Dong K L, Zhou H, Shao W L, et al. Perovskite-like silver halide single-crystal microbelt enables ultrasensitive flexible X-ray detectors. ACS Nano, 2023, 17, 1495 doi: 10.1021/acsnano.2c10318[5] Aydin E, Allen T G, De Bastiani M, et al. Pathways toward commercial perovskite/silicon tandem photovoltaics. Science, 2024, 383, eadh3849 doi: 10.1126/science.adh3849[6] Zhou H, Song Z N, Grice C R, et al. Self-powered CsPbBr3 nanowire photodetector with a vertical structure. Nano Energy, 2018, 53, 880 doi: 10.1016/j.nanoen.2018.09.040[7] Li G Y, Li S H, Ahmed J, et al. Flexible perovskite photodetector with room-temperature self-healing capability without external trigger. InfoMat, 2024, 6, e1259. doi: 10.1002/inf2.12594[8] Gao Z, Zhou H, Dong K L, et al. Defect passivation on lead-free CsSnI3 perovskite nanowires enables high-performance photodetectors with ultra-high stability. Nano Micro Lett, 2022, 14, 215 doi: 10.1007/s40820-022-00964-9[9] Wang F, Zou X M, Xu M J, et al. Recent progress on electrical and optical manipulations of perovskite photodetectors. Adv Sci, 2021, 8, 2100569 doi: 10.1002/advs.202100569[10] Zhou H, Wang R, Zhang X H, et al. High-performance, flexible perovskite photodetector based on CsPbBr3 nanonet. IEEE Trans Electron Devices, 2023, 70, 6435 doi: 10.1109/TED.2023.3327039[11] Cheng W J, Wu S L, Lu J Y, et al. Self-powered wide-narrow bandgap-laminated perovskite photodetector with bipolar photoresponse for secure optical communication. Adv Mater, 2024, 36, 2307534 doi: 10.1002/adma.202307534[12] Huang J B, Shuang Z H, Zhang X H, et al. Mechanical grinding driven engineering enables high-performance CsPbBr3 perovskite photodetectors. IEEE Electron Device Lett, 2024, 45, 1233 doi: 10.1109/LED.2024.3403551[13] Zhao Y, Jiao S J, Liu S, et al. Surface passivation of CsPbBr3 films by interface engineering in efficient and stable self-powered perovskite photodetector. J Alloys Compd, 2023, 965, 171434 doi: 10.1016/j.jallcom.2023.171434[14] Li Q, Wang S R, Jia C, et al. High-performance planar self-driven visible and near-infrared photodetector based on Pb-Sn perovskite single crystals. J Phys Chem Lett, 2023, 14, 5148 doi: 10.1021/acs.jpclett.3c01083[15] Yang J, Wang Y K, Huang L X, et al. High-efficiency and stable perovskite photodetectors with an F4-TCNQ-modified interface of NiOx and perovskite layers. J Phys Chem Lett, 2022, 13, 3904 doi: 10.1021/acs.jpclett.2c00860[16] Zhou H, Ren D J, Huang J B, et al. Monolayer cesium lead bromine chloride nanocrystal self-powered photodetectors. IEEE Electron Device Lett, 2022, 43, 1283 doi: 10.1109/LED.2022.3184285[17] Han Y, Wen R, Ji T, et al. TiN electrode for high-performance CsPbBr3 perovskite nanocrystal-based photodetectors. IEEE Sens J, 2023, 23, 8335 doi: 10.1109/JSEN.2023.3248867[18] Lu X Y, Li J Y, Zhang Y C, et al. Template-confined oriented perovskite nanowire arrays enable polarization detection and imaging. ACS Appl Mater Interfaces, 2024, 16, 24976 doi: 10.1021/acsami.4c04455[19] Li J, Li J L, An M Q, et al. Ultralong compositional gradient perovskite nanowires fabricated by source-limiting anion exchange. ACS Nano, 2024, 18, 30978 doi: 10.1021/acsnano.4c06676[20] Kim M K, Park S M, Jin H, et al. Uniaxial alignment of perovskite nanowires via brush painting technique for efficient flexible polarized photodetectors. J Mater Sci Technol, 2025, 207, 24 doi: 10.1016/j.jmst.2024.04.031[21] Wang G H, Han B, Mak C H, et al. Mixed-dimensional van der waals heterostructure for high-performance and air-stable perovskite nanowire photodetectors. ACS Appl Mater Interfaces, 2022, 14, 55183 doi: 10.1021/acsami.2c15139[22] Li G H, Gao R, Han Y, et al. High detectivity photodetectors based on perovskite nanowires with suppressed surface defects. Photon Res, 2020, 8, 1862 doi: 10.1364/PRJ.403030 -
Proportional views