Citation: |
Yujun Xie, Peng Wang, Hongyan Yu, Chengyang Zhong, Jie Peng, Jungan Wang, Chen Yang, Yu Han, Ang Li, Zehao Guan, Feng Qiu, Ming Li. PZT photonic materials and devices platform[J]. Journal of Semiconductors, 2024, 45(12): 120501. doi: 10.1088/1674-4926/24110020
****
Y J Xie, P Wang, H Y Yu, C Y Zhong, J Peng, J G Wang, C Yang, Y Han, A Li, Z H Guan, F Qiu, and M Li, PZT photonic materials and devices platform[J]. J. Semicond., 2024, 45(12), 120501 doi: 10.1088/1674-4926/24110020
|
PZT photonic materials and devices platform
DOI: 10.1088/1674-4926/24110020
CSTR: 32376.14.1674-4926.24110020
More Information-
References
[1] Abel S, Eltes F, Ortmann J E, et al. Large Pockels effect in micro-and nanostructured barium titanate integrated on silicon. Nat Mater, 2019, 18(1), 42 doi: 10.1038/s41563-018-0208-0[2] Wen Y Y, Chen H S, Wu Z P, et al. Fabrication and photonic applications of Si-integrated LiNbO3 and BaTiO3 ferroelectric thin films. APL Mater, 2024, 12(2), 020601 doi: 10.1063/5.0192018[3] Wang C L, Li Z H, Riemensberger J, et al. Lithium tantalate photonic integrated circuits for volume manufacturing. Nature, 2024, 629, 784 doi: 10.1038/s41586-024-07369-1[4] Ban D S, Liu G L, Yu H Y, et al. Low driving voltage and low optical loss electro-optic modulators based on lead zirconate titanate thin film on silicon substrate. J Light Technol, 2022, 40(9), 2939 doi: 10.1109/JLT.2021.3138887[5] Alexander K, George J P, Verbist J, et al. Nanophotonic Pockels modulators on a silicon nitride platform. Nat Commun, 2018, 9(1), 3444 doi: 10.1038/s41467-018-05846-6[6] Kang T D, Xiao B, Avrutin V, et al. Large electro-optic effect in single-crystal Pb(Zr, Ti)O3 (001) measured by spectroscopic ellipsometry. J Appl Phys, 2008, 104(9), 093103 doi: 10.1063/1.3009655[7] Zhu M M, Du Z H, Jing L, et al. Optical and electro-optic anisotropy of epitaxial PZT thin films. Appl Phys Lett, 2015, 107(3), 031907 doi: 10.1063/1.4927404[8] Ban D S, Liu G L, Yu H Y, et al. High electro-optic coefficient lead zirconate titanate films toward low-power and compact modulators. Opt Mater Express, 2021, 11(6), 1733 doi: 10.1364/OME.426986[9] Yokoyama S, Mao J W, Uemura F, et al. 200 Gbit/s transmitter based on a spin-on ferroelectric waveguide modulator. 2023 Optical Fiber Communications Conference and Exhibition (OFC), 2023, 1 doi: 10.1364/OFC.2023.Tu3C.2[10] Feutmba G F, Da Silva L, Singh N, et al. High frequency characterization of PZT thin-films deposited by chemical solution deposition on SOI for integrated high speed electro-optic modulators. Opt Mater Express, 2023, 13(7), 2120 doi: 10.1364/OME.494148[11] Liu G L, Yu H Y, Ban D S, et al. Highly efficient lead zirconate titanate ring modulator. APL Photonics, 2024, 9(6), 066111 doi: 10.1063/5.0193922[12] Alam M S, Li X Y, Jacques M, et al. Net 220 Gbps/λ IM/DD transmssion in O-band and C-band with silicon photonic traveling-wave MZM. J Light Technol, 2021, 39(13), 4270 doi: 10.1109/JLT.2021.3074096[13] He M B, Xu M Y, Ren Y X, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat Photonics, 2019, 13(5), 359 doi: 10.1038/s41566-019-0378-6[14] Xu M Y, Zhu Y T, Pittalà F, et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica, 2022, 9(1), 61 doi: 10.1364/OPTICA.449691[15] Zhang Y G, Zhang H G, Zhang J W, et al. 240 Gb/s optical transmission based on an ultrafast silicon microring modulator. Photon Res, 2022, 10(4), 1127 doi: 10.1364/PRJ.441791[16] Tan Y, Niu S P, Billet M, et al. Micro-transfer printed thin film lithium niobate (TFLN)-on-silicon ring modulator. ACS Photonics, 2024, 11(5), 1920 doi: 10.1021/acsphotonics.3c01869 -
Proportional views