Citation: |
Dezhong Hu, Zhen Zhang, Kaixuan Zhang, Qian He, Weijie Zhao. Broadband photoluminescence and nonlinear chiroptical properties in chiral 2D halide perovskites[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/24110034
****
D Z Hu, Z Zhang, K X Zhang, Q He, and W J Zhao, Broadband photoluminescence and nonlinear chiroptical properties in chiral 2D halide perovskites[J]. J. Semicond., 2025, 46(7), 072102 doi: 10.1088/1674-4926/24110034
|
Broadband photoluminescence and nonlinear chiroptical properties in chiral 2D halide perovskites
DOI: 10.1088/1674-4926/24110034
CSTR: 32376.14.1674-4926.24110034
More Information-
Abstract
Two-dimensional (2D) chiral halide perovskites (CHPs) have attracted broad interest due to their distinct spin-dependent properties and promising applications in chiroptics and spintronics. Here, we report a new type of 2D CHP single crystals, namely R/S-3BrMBA2PbBr4. The chirality of the as-prepared samples is confirmed by exploiting circular dichroism spectroscopy, indicating a successful chirality transfer from chiral organic cations to their inorganic perovskite sublattices. Furthermore, we observed bright photoluminescence spanning from 380 to 750 nm in R/S-3BrMBA2PbBr4 crystals at room temperature. Such broad photoluminescence originates from free excitons and self-trapped excitons. In addition, efficient second-harmonic generation (SHG) performance was observed in chiral perovskite single crystals with high circular polarization ratios and non-linear optical circular dichroism. This demonstrates that R/S-3BrMBA2PbBr4 crystals can be used to detect and generate left- and right-handed circularly polarized light. Our study provides a new platform to develop high-performance chiroptical and spintronic devices. -
References
[1] Zhu H M, Fu Y P, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater, 2015, 14(6), 636 doi: 10.1038/nmat4271[2] Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347(6221), 519 doi: 10.1126/science.aaa2725[3] Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156), 341 doi: 10.1126/science.1243982[4] Dai S W, Hsu B W, Chen C Y, et al. Perovskite quantum dots with near unity solution and neat-film photoluminescent quantum yield by novel spray synthesis. Adv Mater, 2018, 30(7), 1705532 doi: 10.1002/adma.201705532[5] Zhang Y L, Park N G. Quasi-two-dimensional perovskite solar cells with efficiency exceeding 22%. Acs Energy Lett, 2022, 7(2), 757 doi: 10.1021/acsenergylett.1c02645[6] Duan T W, You S, Chen M, et al. Chiral-structured heterointerfaces enable durable perovskite solar cells. Science, 2024, 384(6698), 878 doi: 10.1126/science.ado5172[7] Kong H, Sun W T, Zhou H P. Progress in flexible perovskite solar cells with improved efficiency. J Semicond, 2021, 42(10), 101605 doi: 10.1088/1674-4926/42/10/101605[8] Sun C J, Jiang Y Z, Cui M H, et al. High-performance large-area quasi-2D perovskite light-emitting diodes. Nat Commun, 2021, 12, 2207 doi: 10.1038/s41467-021-22529-x[9] Xing J, Zhao Y B, Askerka M, et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat Commun, 2018, 9, 3541 doi: 10.1038/s41467-018-05909-8[10] Teng P P, Reichert S, Xu W D, et al. Degradation and self-repairing in perovskite light-emitting diodes. Matter, 2021, 4(11), 3710 doi: 10.1016/j.matt.2021.09.007[11] Yoon Y J, Kim J Y. A recent advances of blue perovskite light emitting diodes for next generation displays. J Semicond, 2021, 42(10), 101608 doi: 10.1088/1674-4926/42/10/101608[12] Xiang H Y, Zuo C T, Zeng H B, et al. White light-emitting diodes from perovskites. J Semicond, 2021, 42(3), 030202 doi: 10.1088/1674-4926/42/3/030202[13] Peng Y, Liu X T, Li L N, et al. Realization of vis-NIR dual-modal circularly polarized light detection in chiral perovskite bulk crystals. J Am Chem Soc, 2021, 143(35), 14077 doi: 10.1021/jacs.1c07183[14] Chen C, Gao L, Gao W R, et al. Circularly polarized light detection using chiral hybrid perovskite. Nat Commun, 2019, 10(1), 1927 doi: 10.1038/s41467-019-09942-z[15] Wang L, Xue Y X, Cui M H, et al. A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector. Angewandte Chemie, 2020, 132(16), 6504 doi: 10.1002/ange.201915912[16] Yan Y X, Li Z X, Lou Z. Photodetector based on Ruddlesden-Popper perovskite microwires with broader band detection. J Semicond, 2023, 44(8), 082201 doi: 10.1088/1674-4926/44/8/082201[17] Liu F J, Wang J W, Wang L, et al. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor. J Semicond, 2017, 38(3), 034002 doi: 10.1088/1674-4926/38/3/034002[18] Sutherland B R, Sargent E H. Perovskite photonic sources. Nat Photonics, 2016, 10(5), 295 doi: 10.1038/nphoton.2016.62[19] Raghavan C M, Chen T P, Li S S, et al. Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-Popper perovskite single crystals. Nano Lett, 2018, 18(5), 3221 doi: 10.1021/acs.nanolett.8b00990[20] Zhou Y, Yong Z J, Zhang K C, et al. Ultrabroad photoluminescence and electroluminescence at new wavelengths from doped organometal halide perovskites. J Phys Chem Lett, 2016, 7(14), 2735 doi: 10.1021/acs.jpclett.6b01147[21] Ahn J, Lee E, Tan J, et al. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic-inorganic hybrid perovskites. Mater Horiz, 2017, 4(5), 851 doi: 10.1039/C7MH00197E[22] Huang P J, Taniguchi K, Miyasaka H. Bulk photovoltaic effect in a pair of chiral-polar layered perovskite-type lead iodides altered by chirality of organic cations. J Am Chem Soc, 2019, 141(37), 14520 doi: 10.1021/jacs.9b06815[23] Ahn J, Ma S, Kim J Y, et al. Chiral 2D organic inorganic hybrid perovskite with circular dichroism tunable over wide wavelength range. J Am Chem Soc, 2020, 142(9), 4206 doi: 10.1021/jacs.9b11453[24] Liu Y L, Wang C, Guo Y R, et al. New lead bromide chiral perovskites with ultra-broadband white-light emission. J Mater Chem C, 2020, 8(17), 5673 doi: 10.1039/D0TC00881H[25] Billing D G, Lemmerer A. Synthesis and crystal structures of inorganic-organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm, 2006, 8(9), 686 doi: 10.1039/B606987H[26] Zhang Z X, Wu J, Lu H P. Deciphering the electronic and structural origin of chiroptical activity of chiral 2D perovskites. Chem Sci, 2024, 15(48), 20440 doi: 10.1039/D4SC04915B[27] Cui Y, Jiang J W, Mi W B, et al. Synthesis of five-layered chiral perovskite nanowires and enacting chiroptical activity regulation. Cell Rep Phys Sci, 2023, 4(3), 101299 doi: 10.1016/j.xcrp.2023.101299[28] Lu Y, Wang Q, Han L, et al. Spintronic phenomena and applications in hybrid organic-inorganic perovskites. Adv Funct Mater, 2024, 34(27), 2314427 doi: 10.1002/adfm.202314427[29] Li J Z, Qin Y, Gao Y, et al. Research progress in spintronics of chiral perovskite materials. Chin Sci Bull, 2023, 68(34), 4704 (in Chinese) doi: 10.1360/TB-2023-0512[30] Hu Y, Florio F, Chen Z Z, et al. A chiral switchable photovoltaic ferroelectric 1D perovskite. Sci Adv, 2020, 6(9), eaay4213 doi: 10.1126/sciadv.aay4213[31] Gao J X, Zhang W Y, Wu Z G, et al. Enantiomorphic perovskite ferroelectrics with circularly polarized luminescence. J Am Chem Soc, 2020, 142(10), 4756 doi: 10.1021/jacs.9b13291[32] Guo T M, Gao F F, Gong Y J, et al. Chiral two-dimensional hybrid organic-inorganic perovskites for piezoelectric ultrasound detection. J Am Chem Soc, 2023, 145(41), 22475 doi: 10.1021/jacs.3c06708[33] Lu Y, Wang Q, Chen R Y, et al. Spin-dependent charge transport in 1D chiral hybrid lead-bromide perovskite with high stability. Adv Funct Mater, 2021, 31(43), 2104605 doi: 10.1002/adfm.202104605[34] Lu H P, Xiao C X, Song R Y, et al. Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport. J Am Chem Soc, 2020, 142(30), 13030 doi: 10.1021/jacs.0c03899[35] Kim Y H, Zhai Y X, Lu H P, et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science, 2021, 371(6534), 1129 doi: 10.1126/science.abf5291[36] Ye C Y, Jiang J W, Zou S L, et al. Core-shell three-dimensional perovskite nanocrystals with chiral-induced spin selectivity for room-temperature spin light-emitting diodes. J Am Chem Soc, 2022, 144(22), 9707 doi: 10.1021/jacs.2c01214[37] Chen Y Y, Ma J Q, Liu Z Y, et al. Manipulation of valley pseudospin by selective spin injection in chiral two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(11), 15154 doi: 10.1021/acsnano.0c05343[38] Cong L, Cui B B. Research progress in design and synthesis of chiral metal halide perovskites and their circular polarization luminescence. Sci Sin-Chim, 2024, 54(8), 1194 (in Chinese) doi: 10.1360/SSC-2024-0074[39] Zhan G X, Zhang J R, Zhang L H, et al. Stimulating and manipulating robust circularly polarized photoluminescence in achiral hybrid perovskites. Nano Lett, 2022, 22(10), 3961 doi: 10.1021/acs.nanolett.2c00482[40] Chen W J, Zhang S, Zhou M H, et al. Two-photon absorption-based upconverted circularly polarized luminescence generated in chiral perovskite nanocrystals. J Phys Chem Lett, 2019, 10(12), 3290 doi: 10.1021/acs.jpclett.9b01224[41] Hu Y, Chen R W, Pendse S, et al. Chiral photon emission from a chiral–achiral perovskite heterostructure. Appl Phys Lett, 2024, 124(11), 113301 doi: 10.1063/5.0180188[42] Wu W T, Shang X Y, Xu Z J, et al. Toward efficient two-photon circularly polarized light detection through cooperative strategies in chiral quasi-2D perovskites. Adv Sci, 2023, 10(9), e2206070 doi: 10.1002/advs.202206070[43] Yuan C Q, Li X Y, Semin S, et al. Chiral lead halide perovskite nanowires for second-order nonlinear optics. Nano Lett, 2018, 18(9), 5411 doi: 10.1021/acs.nanolett.8b01616[44] Wang H B, Li J Z, Lu H L, et al. Chiral hybrid germanium(II) halide with strong nonlinear chiroptical properties. Angew Chem Int Ed, 2023, 62(41), e202309600 doi: 10.1002/anie.202309600[45] He T C, Cui Y Y, Luo T, et al. Research progress in optical activities and nonlinear optics of chiral perovskites. Sci Sin-Phys Mech As, 2023, 53(8), 284205 (in Chinese)[46] Liu T J, Shi W D, Tang W D, et al. High responsivity circular polarized light detectors based on quasi two-dimensional chiral perovskite films. ACS Nano, 2022, 16(2), 2682 doi: 10.1021/acsnano.1c09521[47] Wu Z Y, Liu X T, Ji C M, et al. Above-room-temperature switching of quadratic nonlinear optical properties in a Bi–halide organic–inorganic hybrid. J Mater Chem C, 2018, 6(35), 9532 doi: 10.1039/C8TC02791A[48] Di Nuzzo D, Cui L S, Greenfield J L, et al. Circularly polarized photoluminescence from chiral perovskite thin films at room temperature. ACS Nano, 2020, 14(6), 7610 doi: 10.1021/acsnano.0c03628[49] Ma S, Jung Y K, Ahn J, et al. Elucidating the origin of chiroptical activity in chiral 2D perovskites through nano-confined growth. Nat Commun, 2022, 13(1), 3259 doi: 10.1038/s41467-022-31017-9[50] Peng Y, Wang X, Li L N, et al. Moisture-resistant chiral perovskites for white-light circularly polarized photoluminescence. Adv Opt Mater, 2023, 11(1), 2201888 doi: 10.1002/adom.202201888[51] Janiak C. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J Chem Soc, Dalton Trans, 2000, (21), 3885 doi: 10.1039/b003010o[52] Liu S P, Kepenekian M, Bodnar S, et al. Bright circularly polarized photoluminescence in chiral layered hybrid lead-halide perovskites. Sci Adv, 2023, 9(35), eadh5083 doi: 10.1126/sciadv.adh5083[53] Mao L L, Guo P J, Kepenekian M, et al. Structural diversity in white-light-emitting hybrid lead bromide perovskites. J Am Chem Soc, 2018, 140(40), 13078 doi: 10.1021/jacs.8b08691[54] Cortecchia D, Neutzner S, Kandada A R S, et al. Broadband emission in two-dimensional hybrid perovskites: The role of structural deformation. J Am Chem Soc, 2017, 139(1), 39 doi: 10.1021/jacs.6b10390[55] Ding Z J, Chen Q L, Jiang Y Z, et al. Structure-guided approaches for enhanced spin-splitting in chiral perovskite. JACS Au, 2024, 4(4), 1263 doi: 10.1021/jacsau.3c00835[56] Jin S R, Zheng Y L, Li A Z. Characterization of photoluminescence intensity and efficiency of free excitons in semiconductor quantum well structures. J Appl Phys, 1997, 82(8), 3870 doi: 10.1063/1.365689[57] Seetoh I P, Soh C B, Fitzgerald E A, et al. Auger recombination as the dominant recombination process in indium nitride at low temperatures during steady-state photoluminescence. Appl Phys Lett, 2013, 102(10), 101112 doi: 10.1063/1.4795793[58] Li G F, Zhang Y, Wang W H, et al. Correlated dynamics of free and self-trapped excitons and broadband photodetection in BEA2PbBr4 layered crystals. Adv Opt Mater, 2022, 10(12), 2200223 doi: 10.1002/adom.202200223[59] Chai C Y, Han X B, Liu C D, et al. Circularly polarized luminescence in zero-dimensional antimony halides: Structural distortion controlled luminescence thermometer. J Phys Chem Lett, 2023, 14(17), 4063 doi: 10.1021/acs.jpclett.3c00693[60] Chang X R, Lin Y F, Cheng X H, et al. Efficient deep-blue light-emitting 2D (100)-oriented perovskites and spectral broadening by exciton self-trapping for white-light emissions. Adv Opt Mater, 2024, 12(10), 2302211 doi: 10.1002/adom.202302211[61] Li J Z, Wang H Z, Li D H. Self-trapped excitons in two-dimensional perovskites. Front Optoelectron, 2020, 13(3), 225 doi: 10.1007/s12200-020-1051-x[62] Zhou B, Liu Z X, Fang S F, et al. Emission mechanism of self-trapped excitons in Sb3+-doped all-inorganic metal-halide perovskites. J Phys Chem Lett, 2022, 13(39), 9140 doi: 10.1021/acs.jpclett.2c02759[63] Han X, Zheng Y S, Chai S Q, et al. 2D organic-inorganic hybrid perovskite materials for nonlinear optics. Nanophotonics, 2020, 9(7), 1787 doi: 10.1515/nanoph-2020-0038[64] Zhou X, Cheng J X, Zhou Y B, et al. Strong second-harmonic generation in atomic layered GaSe. J Am Chem Soc, 2015, 137(25), 7994 doi: 10.1021/jacs.5b04305[65] Hooper D C, Mark A G, Kuppe C, et al. Strong rotational anisotropies affect nonlinear chiral metamaterials. Adv Mater, 2017, 29(13), 1605110 doi: 10.1002/adma.201605110[66] Guo Z H, Li J Z, Liu R L, et al. Spatially correlated chirality in chiral two-dimensional perovskites revealed by second-harmonic-generation circular dichroism microscopy. Nano Lett, 2023, 23(16), 7434 doi: 10.1021/acs.nanolett.3c01863 -
Supplements
24110034Supplementary Information.pdf
-
Proportional views