J. Semicond. >  In Press

ARTICLES

Broadband photoluminescence and nonlinear chiroptical properties in chiral 2D halide perovskites

Dezhong Hu1, Zhen Zhang1, Kaixuan Zhang1, Qian He1 and Weijie Zhao1, 2,

+ Author Affiliations

 Corresponding author: Weijie Zhao, zhaowj@seu.edu.cn

DOI: 10.1088/1674-4926/24110034CSTR: 32376.14.1674-4926.24110034

PDF

Turn off MathJax

Abstract: Two-dimensional (2D) chiral halide perovskites (CHPs) have attracted broad interest due to their distinct spin-dependent properties and promising applications in chiroptics and spintronics. Here, we report a new type of 2D CHP single crystals, namely R/S-3BrMBA2PbBr4. The chirality of the as-prepared samples is confirmed by exploiting circular dichroism spectroscopy, indicating a successful chirality transfer from chiral organic cations to their inorganic perovskite sublattices. Furthermore, we observed bright photoluminescence spanning from 380 to 750 nm in R/S-3BrMBA2PbBr4 crystals at room temperature. Such broad photoluminescence originates from free excitons and self-trapped excitons. In addition, efficient second-harmonic generation (SHG) performance was observed in chiral perovskite single crystals with high circular polarization ratios and non-linear optical circular dichroism. This demonstrates that R/S-3BrMBA2PbBr4 crystals can be used to detect and generate left- and right-handed circularly polarized light. Our study provides a new platform to develop high-performance chiroptical and spintronic devices.

Key words: chiral halide perovskitescircular dichroismself-trapped excitonsphotoluminescencesecond-harmonic generation



[1]
Zhu H M, Fu Y P, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater, 2015, 14(6), 636 doi: 10.1038/nmat4271
[2]
Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347(6221), 519 doi: 10.1126/science.aaa2725
[3]
Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156), 341 doi: 10.1126/science.1243982
[4]
Dai S W, Hsu B W, Chen C Y, et al. Perovskite quantum dots with near unity solution and neat-film photoluminescent quantum yield by novel spray synthesis. Adv Mater, 2018, 30(7), 1705532 doi: 10.1002/adma.201705532
[5]
Zhang Y L, Park N G. Quasi-two-dimensional perovskite solar cells with efficiency exceeding 22%. Acs Energy Lett, 2022, 7(2), 757 doi: 10.1021/acsenergylett.1c02645
[6]
Duan T W, You S, Chen M, et al. Chiral-structured heterointerfaces enable durable perovskite solar cells. Science, 2024, 384(6698), 878 doi: 10.1126/science.ado5172
[7]
Kong H, Sun W T, Zhou H P. Progress in flexible perovskite solar cells with improved efficiency. J Semicond, 2021, 42(10), 101605 doi: 10.1088/1674-4926/42/10/101605
[8]
Sun C J, Jiang Y Z, Cui M H, et al. High-performance large-area quasi-2D perovskite light-emitting diodes. Nat Commun, 2021, 12, 2207 doi: 10.1038/s41467-021-22529-x
[9]
Xing J, Zhao Y B, Askerka M, et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat Commun, 2018, 9, 3541 doi: 10.1038/s41467-018-05909-8
[10]
Teng P P, Reichert S, Xu W D, et al. Degradation and self-repairing in perovskite light-emitting diodes. Matter, 2021, 4(11), 3710 doi: 10.1016/j.matt.2021.09.007
[11]
Yoon Y J, Kim J Y. A recent advances of blue perovskite light emitting diodes for next generation displays. J Semicond, 2021, 42(10), 101608 doi: 10.1088/1674-4926/42/10/101608
[12]
Xiang H Y, Zuo C T, Zeng H B, et al. White light-emitting diodes from perovskites. J Semicond, 2021, 42(3), 030202 doi: 10.1088/1674-4926/42/3/030202
[13]
Peng Y, Liu X T, Li L N, et al. Realization of vis-NIR dual-modal circularly polarized light detection in chiral perovskite bulk crystals. J Am Chem Soc, 2021, 143(35), 14077 doi: 10.1021/jacs.1c07183
[14]
Chen C, Gao L, Gao W R, et al. Circularly polarized light detection using chiral hybrid perovskite. Nat Commun, 2019, 10(1), 1927 doi: 10.1038/s41467-019-09942-z
[15]
Wang L, Xue Y X, Cui M H, et al. A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector. Angewandte Chemie, 2020, 132(16), 6504 doi: 10.1002/ange.201915912
[16]
Yan Y X, Li Z X, Lou Z. Photodetector based on Ruddlesden-Popper perovskite microwires with broader band detection. J Semicond, 2023, 44(8), 082201 doi: 10.1088/1674-4926/44/8/082201
[17]
Liu F J, Wang J W, Wang L, et al. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor. J Semicond, 2017, 38(3), 034002 doi: 10.1088/1674-4926/38/3/034002
[18]
Sutherland B R, Sargent E H. Perovskite photonic sources. Nat Photonics, 2016, 10(5), 295 doi: 10.1038/nphoton.2016.62
[19]
Raghavan C M, Chen T P, Li S S, et al. Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-Popper perovskite single crystals. Nano Lett, 2018, 18(5), 3221 doi: 10.1021/acs.nanolett.8b00990
[20]
Zhou Y, Yong Z J, Zhang K C, et al. Ultrabroad photoluminescence and electroluminescence at new wavelengths from doped organometal halide perovskites. J Phys Chem Lett, 2016, 7(14), 2735 doi: 10.1021/acs.jpclett.6b01147
[21]
Ahn J, Lee E, Tan J, et al. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic-inorganic hybrid perovskites. Mater Horiz, 2017, 4(5), 851 doi: 10.1039/C7MH00197E
[22]
Huang P J, Taniguchi K, Miyasaka H. Bulk photovoltaic effect in a pair of chiral-polar layered perovskite-type lead iodides altered by chirality of organic cations. J Am Chem Soc, 2019, 141(37), 14520 doi: 10.1021/jacs.9b06815
[23]
Ahn J, Ma S, Kim J Y, et al. Chiral 2D organic inorganic hybrid perovskite with circular dichroism tunable over wide wavelength range. J Am Chem Soc, 2020, 142(9), 4206 doi: 10.1021/jacs.9b11453
[24]
Liu Y L, Wang C, Guo Y R, et al. New lead bromide chiral perovskites with ultra-broadband white-light emission. J Mater Chem C, 2020, 8(17), 5673 doi: 10.1039/D0TC00881H
[25]
Billing D G, Lemmerer A. Synthesis and crystal structures of inorganic-organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm, 2006, 8(9), 686 doi: 10.1039/B606987H
[26]
Zhang Z X, Wu J, Lu H P. Deciphering the electronic and structural origin of chiroptical activity of chiral 2D perovskites. Chem Sci, 2024, 15(48), 20440 doi: 10.1039/D4SC04915B
[27]
Cui Y, Jiang J W, Mi W B, et al. Synthesis of five-layered chiral perovskite nanowires and enacting chiroptical activity regulation. Cell Rep Phys Sci, 2023, 4(3), 101299 doi: 10.1016/j.xcrp.2023.101299
[28]
Lu Y, Wang Q, Han L, et al. Spintronic phenomena and applications in hybrid organic-inorganic perovskites. Adv Funct Mater, 2024, 34(27), 2314427 doi: 10.1002/adfm.202314427
[29]
Li J Z, Qin Y, Gao Y, et al. Research progress in spintronics of chiral perovskite materials. Chin Sci Bull, 2023, 68(34), 4704 (in Chinese) doi: 10.1360/TB-2023-0512
[30]
Hu Y, Florio F, Chen Z Z, et al. A chiral switchable photovoltaic ferroelectric 1D perovskite. Sci Adv, 2020, 6(9), eaay4213 doi: 10.1126/sciadv.aay4213
[31]
Gao J X, Zhang W Y, Wu Z G, et al. Enantiomorphic perovskite ferroelectrics with circularly polarized luminescence. J Am Chem Soc, 2020, 142(10), 4756 doi: 10.1021/jacs.9b13291
[32]
Guo T M, Gao F F, Gong Y J, et al. Chiral two-dimensional hybrid organic-inorganic perovskites for piezoelectric ultrasound detection. J Am Chem Soc, 2023, 145(41), 22475 doi: 10.1021/jacs.3c06708
[33]
Lu Y, Wang Q, Chen R Y, et al. Spin-dependent charge transport in 1D chiral hybrid lead-bromide perovskite with high stability. Adv Funct Mater, 2021, 31(43), 2104605 doi: 10.1002/adfm.202104605
[34]
Lu H P, Xiao C X, Song R Y, et al. Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport. J Am Chem Soc, 2020, 142(30), 13030 doi: 10.1021/jacs.0c03899
[35]
Kim Y H, Zhai Y X, Lu H P, et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science, 2021, 371(6534), 1129 doi: 10.1126/science.abf5291
[36]
Ye C Y, Jiang J W, Zou S L, et al. Core-shell three-dimensional perovskite nanocrystals with chiral-induced spin selectivity for room-temperature spin light-emitting diodes. J Am Chem Soc, 2022, 144(22), 9707 doi: 10.1021/jacs.2c01214
[37]
Chen Y Y, Ma J Q, Liu Z Y, et al. Manipulation of valley pseudospin by selective spin injection in chiral two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(11), 15154 doi: 10.1021/acsnano.0c05343
[38]
Cong L, Cui B B. Research progress in design and synthesis of chiral metal halide perovskites and their circular polarization luminescence. Sci Sin-Chim, 2024, 54(8), 1194 (in Chinese) doi: 10.1360/SSC-2024-0074
[39]
Zhan G X, Zhang J R, Zhang L H, et al. Stimulating and manipulating robust circularly polarized photoluminescence in achiral hybrid perovskites. Nano Lett, 2022, 22(10), 3961 doi: 10.1021/acs.nanolett.2c00482
[40]
Chen W J, Zhang S, Zhou M H, et al. Two-photon absorption-based upconverted circularly polarized luminescence generated in chiral perovskite nanocrystals. J Phys Chem Lett, 2019, 10(12), 3290 doi: 10.1021/acs.jpclett.9b01224
[41]
Hu Y, Chen R W, Pendse S, et al. Chiral photon emission from a chiral–achiral perovskite heterostructure. Appl Phys Lett, 2024, 124(11), 113301 doi: 10.1063/5.0180188
[42]
Wu W T, Shang X Y, Xu Z J, et al. Toward efficient two-photon circularly polarized light detection through cooperative strategies in chiral quasi-2D perovskites. Adv Sci, 2023, 10(9), e2206070 doi: 10.1002/advs.202206070
[43]
Yuan C Q, Li X Y, Semin S, et al. Chiral lead halide perovskite nanowires for second-order nonlinear optics. Nano Lett, 2018, 18(9), 5411 doi: 10.1021/acs.nanolett.8b01616
[44]
Wang H B, Li J Z, Lu H L, et al. Chiral hybrid germanium(II) halide with strong nonlinear chiroptical properties. Angew Chem Int Ed, 2023, 62(41), e202309600 doi: 10.1002/anie.202309600
[45]
He T C, Cui Y Y, Luo T, et al. Research progress in optical activities and nonlinear optics of chiral perovskites. Sci Sin-Phys Mech As, 2023, 53(8), 284205 (in Chinese)
[46]
Liu T J, Shi W D, Tang W D, et al. High responsivity circular polarized light detectors based on quasi two-dimensional chiral perovskite films. ACS Nano, 2022, 16(2), 2682 doi: 10.1021/acsnano.1c09521
[47]
Wu Z Y, Liu X T, Ji C M, et al. Above-room-temperature switching of quadratic nonlinear optical properties in a Bi–halide organic–inorganic hybrid. J Mater Chem C, 2018, 6(35), 9532 doi: 10.1039/C8TC02791A
[48]
Di Nuzzo D, Cui L S, Greenfield J L, et al. Circularly polarized photoluminescence from chiral perovskite thin films at room temperature. ACS Nano, 2020, 14(6), 7610 doi: 10.1021/acsnano.0c03628
[49]
Ma S, Jung Y K, Ahn J, et al. Elucidating the origin of chiroptical activity in chiral 2D perovskites through nano-confined growth. Nat Commun, 2022, 13(1), 3259 doi: 10.1038/s41467-022-31017-9
[50]
Peng Y, Wang X, Li L N, et al. Moisture-resistant chiral perovskites for white-light circularly polarized photoluminescence. Adv Opt Mater, 2023, 11(1), 2201888 doi: 10.1002/adom.202201888
[51]
Janiak C. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J Chem Soc, Dalton Trans, 2000, (21), 3885 doi: 10.1039/b003010o
[52]
Liu S P, Kepenekian M, Bodnar S, et al. Bright circularly polarized photoluminescence in chiral layered hybrid lead-halide perovskites. Sci Adv, 2023, 9(35), eadh5083 doi: 10.1126/sciadv.adh5083
[53]
Mao L L, Guo P J, Kepenekian M, et al. Structural diversity in white-light-emitting hybrid lead bromide perovskites. J Am Chem Soc, 2018, 140(40), 13078 doi: 10.1021/jacs.8b08691
[54]
Cortecchia D, Neutzner S, Kandada A R S, et al. Broadband emission in two-dimensional hybrid perovskites: The role of structural deformation. J Am Chem Soc, 2017, 139(1), 39 doi: 10.1021/jacs.6b10390
[55]
Ding Z J, Chen Q L, Jiang Y Z, et al. Structure-guided approaches for enhanced spin-splitting in chiral perovskite. JACS Au, 2024, 4(4), 1263 doi: 10.1021/jacsau.3c00835
[56]
Jin S R, Zheng Y L, Li A Z. Characterization of photoluminescence intensity and efficiency of free excitons in semiconductor quantum well structures. J Appl Phys, 1997, 82(8), 3870 doi: 10.1063/1.365689
[57]
Seetoh I P, Soh C B, Fitzgerald E A, et al. Auger recombination as the dominant recombination process in indium nitride at low temperatures during steady-state photoluminescence. Appl Phys Lett, 2013, 102(10), 101112 doi: 10.1063/1.4795793
[58]
Li G F, Zhang Y, Wang W H, et al. Correlated dynamics of free and self-trapped excitons and broadband photodetection in BEA2PbBr4 layered crystals. Adv Opt Mater, 2022, 10(12), 2200223 doi: 10.1002/adom.202200223
[59]
Chai C Y, Han X B, Liu C D, et al. Circularly polarized luminescence in zero-dimensional antimony halides: Structural distortion controlled luminescence thermometer. J Phys Chem Lett, 2023, 14(17), 4063 doi: 10.1021/acs.jpclett.3c00693
[60]
Chang X R, Lin Y F, Cheng X H, et al. Efficient deep-blue light-emitting 2D (100)-oriented perovskites and spectral broadening by exciton self-trapping for white-light emissions. Adv Opt Mater, 2024, 12(10), 2302211 doi: 10.1002/adom.202302211
[61]
Li J Z, Wang H Z, Li D H. Self-trapped excitons in two-dimensional perovskites. Front Optoelectron, 2020, 13(3), 225 doi: 10.1007/s12200-020-1051-x
[62]
Zhou B, Liu Z X, Fang S F, et al. Emission mechanism of self-trapped excitons in Sb3+-doped all-inorganic metal-halide perovskites. J Phys Chem Lett, 2022, 13(39), 9140 doi: 10.1021/acs.jpclett.2c02759
[63]
Han X, Zheng Y S, Chai S Q, et al. 2D organic-inorganic hybrid perovskite materials for nonlinear optics. Nanophotonics, 2020, 9(7), 1787 doi: 10.1515/nanoph-2020-0038
[64]
Zhou X, Cheng J X, Zhou Y B, et al. Strong second-harmonic generation in atomic layered GaSe. J Am Chem Soc, 2015, 137(25), 7994 doi: 10.1021/jacs.5b04305
[65]
Hooper D C, Mark A G, Kuppe C, et al. Strong rotational anisotropies affect nonlinear chiral metamaterials. Adv Mater, 2017, 29(13), 1605110 doi: 10.1002/adma.201605110
[66]
Guo Z H, Li J Z, Liu R L, et al. Spatially correlated chirality in chiral two-dimensional perovskites revealed by second-harmonic-generation circular dichroism microscopy. Nano Lett, 2023, 23(16), 7434 doi: 10.1021/acs.nanolett.3c01863
Fig. 1.  (Color online) The crystal structure and characterization of single crystals of R/S-3BrMBA2PbBr4. (a) Chemical structures of chiral organic enantiomers (R/S)-3BrMBA. (b) Schematic illustrations of crystal structures of R/S-3BrMBA2PbBr4. (c) Powder XRD patterns of chiral R/S-3BrMBA2PbBr4 single crystals. (d) The optical image under (left) ambient light and (right) UV light (365 nm) of R-3BrMBA2PbBr4 single crystals.

Fig. 2.  (Color online) Optical properties of R/S-3BrMBA2PbBr4. (a) and (b) UV−Vis absorbance and circular dichroism spectra of the CHPs thin films. (c) PL spectra of R-3BrMBA2PbBr4 single crystal (λexc = 325 nm). (d) CIE coordinated of the emissions of R/S-3BrMBA2PbBr4 single crystals.

Fig. 3.  (Color online) The photoluminescence properties of R/S-3BrMBA2PbBr4. (a) Power-dependent PL spectra of R-CHP single crystals obtained at various excitation powers of a 385 nm laser at room temperature. (b) The integrated PL intensity as a function of excitation power of R-CHP single crystals for FE (top), STE1 (middle), and STE2 (bottom). The experimental results are fitted with a power law (dashed lines), i.e., I~ Pk, where I and P are the integrated PL intensity and excitation power, respectively. (c) The decays curves of time-resolve photoluminescence spectra of the R-CHP single crystal emission at 405, 525 and 620 nm, fitted by using bi-exponential decay function. (d) Diagram of luminescence processes in the CHP (GS: ground state, FE state: free-exciton state, STE state: self-trapped exciton state).

Fig. 4.  (Color online) Nonlinear optical responses of S-3BrMBA2PbBr4 single crystal. (a) The SHG intensity of the CHP crystals pumped at various wavelengths. (b) and (c) The SHG spectra of S-3BrMBA2PbBr4 under various excitation power. The excitation wavelengths is 880 nm. (d) The polarization dependence spectra with different excitation wavelength, the solid curves represent the cos(2θ) fit for SHG. (e) SHG intensity as a function of the rotation angle of the quarter-waveplate. The excitation and detection wavelengths are 840 and 420 nm, respectively. (f) Polar SHG intensity plots of the S-3BrMBA2PbBr4 crystal as a function of polarization angle.

[1]
Zhu H M, Fu Y P, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater, 2015, 14(6), 636 doi: 10.1038/nmat4271
[2]
Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347(6221), 519 doi: 10.1126/science.aaa2725
[3]
Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156), 341 doi: 10.1126/science.1243982
[4]
Dai S W, Hsu B W, Chen C Y, et al. Perovskite quantum dots with near unity solution and neat-film photoluminescent quantum yield by novel spray synthesis. Adv Mater, 2018, 30(7), 1705532 doi: 10.1002/adma.201705532
[5]
Zhang Y L, Park N G. Quasi-two-dimensional perovskite solar cells with efficiency exceeding 22%. Acs Energy Lett, 2022, 7(2), 757 doi: 10.1021/acsenergylett.1c02645
[6]
Duan T W, You S, Chen M, et al. Chiral-structured heterointerfaces enable durable perovskite solar cells. Science, 2024, 384(6698), 878 doi: 10.1126/science.ado5172
[7]
Kong H, Sun W T, Zhou H P. Progress in flexible perovskite solar cells with improved efficiency. J Semicond, 2021, 42(10), 101605 doi: 10.1088/1674-4926/42/10/101605
[8]
Sun C J, Jiang Y Z, Cui M H, et al. High-performance large-area quasi-2D perovskite light-emitting diodes. Nat Commun, 2021, 12, 2207 doi: 10.1038/s41467-021-22529-x
[9]
Xing J, Zhao Y B, Askerka M, et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat Commun, 2018, 9, 3541 doi: 10.1038/s41467-018-05909-8
[10]
Teng P P, Reichert S, Xu W D, et al. Degradation and self-repairing in perovskite light-emitting diodes. Matter, 2021, 4(11), 3710 doi: 10.1016/j.matt.2021.09.007
[11]
Yoon Y J, Kim J Y. A recent advances of blue perovskite light emitting diodes for next generation displays. J Semicond, 2021, 42(10), 101608 doi: 10.1088/1674-4926/42/10/101608
[12]
Xiang H Y, Zuo C T, Zeng H B, et al. White light-emitting diodes from perovskites. J Semicond, 2021, 42(3), 030202 doi: 10.1088/1674-4926/42/3/030202
[13]
Peng Y, Liu X T, Li L N, et al. Realization of vis-NIR dual-modal circularly polarized light detection in chiral perovskite bulk crystals. J Am Chem Soc, 2021, 143(35), 14077 doi: 10.1021/jacs.1c07183
[14]
Chen C, Gao L, Gao W R, et al. Circularly polarized light detection using chiral hybrid perovskite. Nat Commun, 2019, 10(1), 1927 doi: 10.1038/s41467-019-09942-z
[15]
Wang L, Xue Y X, Cui M H, et al. A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector. Angewandte Chemie, 2020, 132(16), 6504 doi: 10.1002/ange.201915912
[16]
Yan Y X, Li Z X, Lou Z. Photodetector based on Ruddlesden-Popper perovskite microwires with broader band detection. J Semicond, 2023, 44(8), 082201 doi: 10.1088/1674-4926/44/8/082201
[17]
Liu F J, Wang J W, Wang L, et al. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor. J Semicond, 2017, 38(3), 034002 doi: 10.1088/1674-4926/38/3/034002
[18]
Sutherland B R, Sargent E H. Perovskite photonic sources. Nat Photonics, 2016, 10(5), 295 doi: 10.1038/nphoton.2016.62
[19]
Raghavan C M, Chen T P, Li S S, et al. Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-Popper perovskite single crystals. Nano Lett, 2018, 18(5), 3221 doi: 10.1021/acs.nanolett.8b00990
[20]
Zhou Y, Yong Z J, Zhang K C, et al. Ultrabroad photoluminescence and electroluminescence at new wavelengths from doped organometal halide perovskites. J Phys Chem Lett, 2016, 7(14), 2735 doi: 10.1021/acs.jpclett.6b01147
[21]
Ahn J, Lee E, Tan J, et al. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic-inorganic hybrid perovskites. Mater Horiz, 2017, 4(5), 851 doi: 10.1039/C7MH00197E
[22]
Huang P J, Taniguchi K, Miyasaka H. Bulk photovoltaic effect in a pair of chiral-polar layered perovskite-type lead iodides altered by chirality of organic cations. J Am Chem Soc, 2019, 141(37), 14520 doi: 10.1021/jacs.9b06815
[23]
Ahn J, Ma S, Kim J Y, et al. Chiral 2D organic inorganic hybrid perovskite with circular dichroism tunable over wide wavelength range. J Am Chem Soc, 2020, 142(9), 4206 doi: 10.1021/jacs.9b11453
[24]
Liu Y L, Wang C, Guo Y R, et al. New lead bromide chiral perovskites with ultra-broadband white-light emission. J Mater Chem C, 2020, 8(17), 5673 doi: 10.1039/D0TC00881H
[25]
Billing D G, Lemmerer A. Synthesis and crystal structures of inorganic-organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm, 2006, 8(9), 686 doi: 10.1039/B606987H
[26]
Zhang Z X, Wu J, Lu H P. Deciphering the electronic and structural origin of chiroptical activity of chiral 2D perovskites. Chem Sci, 2024, 15(48), 20440 doi: 10.1039/D4SC04915B
[27]
Cui Y, Jiang J W, Mi W B, et al. Synthesis of five-layered chiral perovskite nanowires and enacting chiroptical activity regulation. Cell Rep Phys Sci, 2023, 4(3), 101299 doi: 10.1016/j.xcrp.2023.101299
[28]
Lu Y, Wang Q, Han L, et al. Spintronic phenomena and applications in hybrid organic-inorganic perovskites. Adv Funct Mater, 2024, 34(27), 2314427 doi: 10.1002/adfm.202314427
[29]
Li J Z, Qin Y, Gao Y, et al. Research progress in spintronics of chiral perovskite materials. Chin Sci Bull, 2023, 68(34), 4704 (in Chinese) doi: 10.1360/TB-2023-0512
[30]
Hu Y, Florio F, Chen Z Z, et al. A chiral switchable photovoltaic ferroelectric 1D perovskite. Sci Adv, 2020, 6(9), eaay4213 doi: 10.1126/sciadv.aay4213
[31]
Gao J X, Zhang W Y, Wu Z G, et al. Enantiomorphic perovskite ferroelectrics with circularly polarized luminescence. J Am Chem Soc, 2020, 142(10), 4756 doi: 10.1021/jacs.9b13291
[32]
Guo T M, Gao F F, Gong Y J, et al. Chiral two-dimensional hybrid organic-inorganic perovskites for piezoelectric ultrasound detection. J Am Chem Soc, 2023, 145(41), 22475 doi: 10.1021/jacs.3c06708
[33]
Lu Y, Wang Q, Chen R Y, et al. Spin-dependent charge transport in 1D chiral hybrid lead-bromide perovskite with high stability. Adv Funct Mater, 2021, 31(43), 2104605 doi: 10.1002/adfm.202104605
[34]
Lu H P, Xiao C X, Song R Y, et al. Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport. J Am Chem Soc, 2020, 142(30), 13030 doi: 10.1021/jacs.0c03899
[35]
Kim Y H, Zhai Y X, Lu H P, et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science, 2021, 371(6534), 1129 doi: 10.1126/science.abf5291
[36]
Ye C Y, Jiang J W, Zou S L, et al. Core-shell three-dimensional perovskite nanocrystals with chiral-induced spin selectivity for room-temperature spin light-emitting diodes. J Am Chem Soc, 2022, 144(22), 9707 doi: 10.1021/jacs.2c01214
[37]
Chen Y Y, Ma J Q, Liu Z Y, et al. Manipulation of valley pseudospin by selective spin injection in chiral two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(11), 15154 doi: 10.1021/acsnano.0c05343
[38]
Cong L, Cui B B. Research progress in design and synthesis of chiral metal halide perovskites and their circular polarization luminescence. Sci Sin-Chim, 2024, 54(8), 1194 (in Chinese) doi: 10.1360/SSC-2024-0074
[39]
Zhan G X, Zhang J R, Zhang L H, et al. Stimulating and manipulating robust circularly polarized photoluminescence in achiral hybrid perovskites. Nano Lett, 2022, 22(10), 3961 doi: 10.1021/acs.nanolett.2c00482
[40]
Chen W J, Zhang S, Zhou M H, et al. Two-photon absorption-based upconverted circularly polarized luminescence generated in chiral perovskite nanocrystals. J Phys Chem Lett, 2019, 10(12), 3290 doi: 10.1021/acs.jpclett.9b01224
[41]
Hu Y, Chen R W, Pendse S, et al. Chiral photon emission from a chiral–achiral perovskite heterostructure. Appl Phys Lett, 2024, 124(11), 113301 doi: 10.1063/5.0180188
[42]
Wu W T, Shang X Y, Xu Z J, et al. Toward efficient two-photon circularly polarized light detection through cooperative strategies in chiral quasi-2D perovskites. Adv Sci, 2023, 10(9), e2206070 doi: 10.1002/advs.202206070
[43]
Yuan C Q, Li X Y, Semin S, et al. Chiral lead halide perovskite nanowires for second-order nonlinear optics. Nano Lett, 2018, 18(9), 5411 doi: 10.1021/acs.nanolett.8b01616
[44]
Wang H B, Li J Z, Lu H L, et al. Chiral hybrid germanium(II) halide with strong nonlinear chiroptical properties. Angew Chem Int Ed, 2023, 62(41), e202309600 doi: 10.1002/anie.202309600
[45]
He T C, Cui Y Y, Luo T, et al. Research progress in optical activities and nonlinear optics of chiral perovskites. Sci Sin-Phys Mech As, 2023, 53(8), 284205 (in Chinese)
[46]
Liu T J, Shi W D, Tang W D, et al. High responsivity circular polarized light detectors based on quasi two-dimensional chiral perovskite films. ACS Nano, 2022, 16(2), 2682 doi: 10.1021/acsnano.1c09521
[47]
Wu Z Y, Liu X T, Ji C M, et al. Above-room-temperature switching of quadratic nonlinear optical properties in a Bi–halide organic–inorganic hybrid. J Mater Chem C, 2018, 6(35), 9532 doi: 10.1039/C8TC02791A
[48]
Di Nuzzo D, Cui L S, Greenfield J L, et al. Circularly polarized photoluminescence from chiral perovskite thin films at room temperature. ACS Nano, 2020, 14(6), 7610 doi: 10.1021/acsnano.0c03628
[49]
Ma S, Jung Y K, Ahn J, et al. Elucidating the origin of chiroptical activity in chiral 2D perovskites through nano-confined growth. Nat Commun, 2022, 13(1), 3259 doi: 10.1038/s41467-022-31017-9
[50]
Peng Y, Wang X, Li L N, et al. Moisture-resistant chiral perovskites for white-light circularly polarized photoluminescence. Adv Opt Mater, 2023, 11(1), 2201888 doi: 10.1002/adom.202201888
[51]
Janiak C. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J Chem Soc, Dalton Trans, 2000, (21), 3885 doi: 10.1039/b003010o
[52]
Liu S P, Kepenekian M, Bodnar S, et al. Bright circularly polarized photoluminescence in chiral layered hybrid lead-halide perovskites. Sci Adv, 2023, 9(35), eadh5083 doi: 10.1126/sciadv.adh5083
[53]
Mao L L, Guo P J, Kepenekian M, et al. Structural diversity in white-light-emitting hybrid lead bromide perovskites. J Am Chem Soc, 2018, 140(40), 13078 doi: 10.1021/jacs.8b08691
[54]
Cortecchia D, Neutzner S, Kandada A R S, et al. Broadband emission in two-dimensional hybrid perovskites: The role of structural deformation. J Am Chem Soc, 2017, 139(1), 39 doi: 10.1021/jacs.6b10390
[55]
Ding Z J, Chen Q L, Jiang Y Z, et al. Structure-guided approaches for enhanced spin-splitting in chiral perovskite. JACS Au, 2024, 4(4), 1263 doi: 10.1021/jacsau.3c00835
[56]
Jin S R, Zheng Y L, Li A Z. Characterization of photoluminescence intensity and efficiency of free excitons in semiconductor quantum well structures. J Appl Phys, 1997, 82(8), 3870 doi: 10.1063/1.365689
[57]
Seetoh I P, Soh C B, Fitzgerald E A, et al. Auger recombination as the dominant recombination process in indium nitride at low temperatures during steady-state photoluminescence. Appl Phys Lett, 2013, 102(10), 101112 doi: 10.1063/1.4795793
[58]
Li G F, Zhang Y, Wang W H, et al. Correlated dynamics of free and self-trapped excitons and broadband photodetection in BEA2PbBr4 layered crystals. Adv Opt Mater, 2022, 10(12), 2200223 doi: 10.1002/adom.202200223
[59]
Chai C Y, Han X B, Liu C D, et al. Circularly polarized luminescence in zero-dimensional antimony halides: Structural distortion controlled luminescence thermometer. J Phys Chem Lett, 2023, 14(17), 4063 doi: 10.1021/acs.jpclett.3c00693
[60]
Chang X R, Lin Y F, Cheng X H, et al. Efficient deep-blue light-emitting 2D (100)-oriented perovskites and spectral broadening by exciton self-trapping for white-light emissions. Adv Opt Mater, 2024, 12(10), 2302211 doi: 10.1002/adom.202302211
[61]
Li J Z, Wang H Z, Li D H. Self-trapped excitons in two-dimensional perovskites. Front Optoelectron, 2020, 13(3), 225 doi: 10.1007/s12200-020-1051-x
[62]
Zhou B, Liu Z X, Fang S F, et al. Emission mechanism of self-trapped excitons in Sb3+-doped all-inorganic metal-halide perovskites. J Phys Chem Lett, 2022, 13(39), 9140 doi: 10.1021/acs.jpclett.2c02759
[63]
Han X, Zheng Y S, Chai S Q, et al. 2D organic-inorganic hybrid perovskite materials for nonlinear optics. Nanophotonics, 2020, 9(7), 1787 doi: 10.1515/nanoph-2020-0038
[64]
Zhou X, Cheng J X, Zhou Y B, et al. Strong second-harmonic generation in atomic layered GaSe. J Am Chem Soc, 2015, 137(25), 7994 doi: 10.1021/jacs.5b04305
[65]
Hooper D C, Mark A G, Kuppe C, et al. Strong rotational anisotropies affect nonlinear chiral metamaterials. Adv Mater, 2017, 29(13), 1605110 doi: 10.1002/adma.201605110
[66]
Guo Z H, Li J Z, Liu R L, et al. Spatially correlated chirality in chiral two-dimensional perovskites revealed by second-harmonic-generation circular dichroism microscopy. Nano Lett, 2023, 23(16), 7434 doi: 10.1021/acs.nanolett.3c01863

24110034Supplementary Information.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 272 Times PDF downloads: 40 Times Cited by: 0 Times

    History

    Received: 17 November 2024 Revised: 06 January 2025 Online: Accepted Manuscript: 18 February 2025Uncorrected proof: 26 March 2025

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Dezhong Hu, Zhen Zhang, Kaixuan Zhang, Qian He, Weijie Zhao. Broadband photoluminescence and nonlinear chiroptical properties in chiral 2D halide perovskites[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/24110034 ****D Z Hu, Z Zhang, K X Zhang, Q He, and W J Zhao, Broadband photoluminescence and nonlinear chiroptical properties in chiral 2D halide perovskites[J]. J. Semicond., 2025, 46(7), 072102 doi: 10.1088/1674-4926/24110034
      Citation:
      Dezhong Hu, Zhen Zhang, Kaixuan Zhang, Qian He, Weijie Zhao. Broadband photoluminescence and nonlinear chiroptical properties in chiral 2D halide perovskites[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/24110034 ****
      D Z Hu, Z Zhang, K X Zhang, Q He, and W J Zhao, Broadband photoluminescence and nonlinear chiroptical properties in chiral 2D halide perovskites[J]. J. Semicond., 2025, 46(7), 072102 doi: 10.1088/1674-4926/24110034

      Broadband photoluminescence and nonlinear chiroptical properties in chiral 2D halide perovskites

      DOI: 10.1088/1674-4926/24110034
      CSTR: 32376.14.1674-4926.24110034
      More Information
      • Dezhong Hu is currently a graduate student pursuing a master's degree in the School of Physics at Southeast University. His research focuses on the optical properties of chiral perovskite semiconductors
      • Weijie Zhao received his B.S. degree from Yanshan University in 2006 and Ph.D. degree from Institute of Semiconductors, Chinese Academy of Sciences (CAS) in 2011. He was a postdoc research fellow in National University of Singapore from 2012 to 2016, and a senior research fellow in Nanyang Technological University from 2016 to 2021. Since 2021, he becomes a distinguished young professor of Physics at Southeast University. His research interests include semiconductor optics, nanophotonics and ultrafast photophysics in two-dimensional semiconductors and their heterostructures. For further information, please visit http://physics.seu.edu.cn/wjzhao
      • Corresponding author: zhaowj@seu.edu.cn
      • Received Date: 2024-11-17
      • Revised Date: 2025-01-06
      • Available Online: 2025-02-18

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return