Citation: |
Viktoriia Mastalieva, Anastasiya Yakubova, Maria Baeva, Vladimir Neplokh, Dmitry M. Mitin, Vladimir Fedorov, Alexander Goltaev, Alexey Mozharov, Fedor Kochetkov, Andrei S. Toikka, Ramazan Kenesbay, Ekaterina Vyacheslavova, Alexander Vorobyev, Kristina Novikova, Dmitry Krasnikov, Jianjun Tian, Albert G. Nasibulin, Alexander Gudovskikh, Sergey Makarov, Ivan Mukhin. Green perovskite CsPbBr3 light-emitting electrochemical cells with distributed Si nanowires-based electrodes for flexible applications[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/24120010
****
V Mastalieva, A Yakubova, M Baeva, V Neplokh, D M Mitin, V Fedorov, A Goltaev, A Mozharov, F Kochetkov, A S Toikka, R Kenesbay, E Vyacheslavova, A Vorobyev, K Novikova, D Krasnikov, J J Tian, A G Nasibulin, A Gudovskikh, S Makarov, and I Mukhin, Green perovskite CsPbBr3 light-emitting electrochemical cells with distributed Si nanowires-based electrodes for flexible applications[J]. J. Semicond., 2025, 46(7), 072801 doi: 10.1088/1674-4926/24120010
|
Green perovskite CsPbBr3 light-emitting electrochemical cells with distributed Si nanowires-based electrodes for flexible applications
DOI: 10.1088/1674-4926/24120010
CSTR: 32376.14.1674-4926.24120010
More Information-
Abstract
The emergence of cesium lead halide perovskite materials stable at air opened new prospects for the optoelectronic industry. In this work we present an approach to fabricating a flexible green perovskite light-emitting electrochemical cell (PeLEC) with a CsPbBr3 perovskite active layer using a highly-ordered silicon nanowire (Si NW) array as a distributed electrode integrated within a thin polydimethylsiloxane film (PDMS). Numerical simulations reveal that Si NWs-based distributed electrode aids the improvement of carrier injection into the perovskite layer with an increased thickness and, therefore, the enhancement of light-emitting performance. The X-ray diffraction study shows that the perovskite layer synthesized on the PDMS membrane with Si NWs has a similar crystal structure to the ones synthesized on planar Si wafers. We perform a comparative analysis of the light-emitting devices’ properties fabricated on rigid silicon substrates and flexible Si NW-based membranes released from substrates. Due to possible potential barriers in a flexible PeLEC between the bottom electrode (made of a network of single-walled carbon nanotube film) and Si NWs, the electroluminescence performance and I ̶ V properties of flexible devices deteriorated compared to rigid devices. The developed PeLECs pave the way for further development of inorganic flexible uniformly light-emitting devices with improved properties.-
Keywords:
- silicon nanowires,
- perovskite,
- CsPbBr3 thin film,
- silicon,
- PeLEC
-
References
[1] Park S I, Xiong Y J, Kim R H, et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science, 2009, 325(5943), 977 doi: 10.1126/science.1175690[2] Kim D H, Lu N S, Ma R, et al. Epidermal electronics. Science, 2011, 333(6044), 838 doi: 10.1126/science.1206157[3] Song Y M, Xie Y Z, Malyarchuk V, et al. Digital cameras with designs inspired by the arthropod eye. Nature, 2013, 497(7447), 95 doi: 10.1038/nature12083[4] Lu M, Zhang Y, Wang S X, et al. Metal halide perovskite light-emitting devices: Promising technology for next-generation displays. Adv Funct Materials, 2019, 29(30), 1902008 doi: 10.1002/adfm.201902008[5] Liashenko T G, Cherotchenko E D, Pushkarev A P, et al. Electronic structure of CsPbBr3- xCl x perovskites: Synthesis, experimental characterization, and DFT simulations. Phys Chem Chem Phys, 2019, 21(35), 18930 doi: 10.1039/C9CP03656C[6] Dey A, Ye J Z, De A, et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano, 2021, 15(7), 10775 doi: 10.1021/acsnano.0c08903[7] C A, Luszczynska B, Rekab W, et al. Inkjet printing of an electron injection layer: New role of cesium carbonate interlayer in polymer OLEDs. Polymers, 2020, 13(1), 80 doi: 10.3390/polym13010080[8] Gustafsson G, Cao Y, Treacy G M, et al. Flexible light-emitting diodes made from soluble conducting polymers. Nature, 1992, 357, 477 doi: 10.1038/357477a0[9] Pietryga J M, Park Y S, Lim J, et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem Rev, 2016, 116(18), 10513 doi: 10.1021/acs.chemrev.6b00169[10] Kovalenko M V, Protesescu L, Bodnarchuk M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 2017, 358(6364), 745 doi: 10.1126/science.aam7093[11] Mohapatra A, Kar M R, Bhaumik S. Recent progress and prospects on metal halide perovskite nanocrystals as color converters in the fabrication of white light-emitting diodes. Front Electron Mater, 2022, 2, 891983 doi: 10.3389/femat.2022.891983[12] Zhao X F, De Andrew Ng J, Friend R H, et al. Opportunities and challenges in perovskite light-emitting devices. ACS Photonics, 2018, 5(10), 3866 doi: 10.1021/acsphotonics.8b00745[13] Wei Z H, Xing J. The rise of perovskite light-emitting diodes. J Phys Chem Lett, 2019, 10(11), 3035 doi: 10.1021/acs.jpclett.9b00277[14] Zhang L X, Mei L Y, Wang K Y, et al. Advances in the application of perovskite materials. Nanomicro Lett, 2023, 15(1), 177[15] Gets D, Alahbakhshi M, Mishra A, et al. Reconfigurable perovskite LEC: Effects of ionic additives and dual function devices (advanced optical materials 3/2021). Adv Opt Mater, 2021, 9(3), 2170010 doi: 10.1002/adom.202170010[16] Cheng T, Zhang Y Z, Lai W Y, et al. Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv Mater, 2015, 27(22), 3349 doi: 10.1002/adma.201405864[17] Miroshnichenko A S, Neplokh V, Mukhin I S, et al. Silicone materials for flexible optoelectronic devices. Materials, 2022, 15(24), 8731 doi: 10.3390/ma15248731[18] Bade S G R, Li J Q, Shan X, et al. Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes. ACS Nano, 2016, 10(2), 1795 doi: 10.1021/acsnano.5b07506[19] Miroshnichenko A S, Deriabin K V, Baeva M, et al. Flexible perovskite CsPbBr3 light emitting devices integrated with GaP nanowire arrays in highly transparent and durable functionalized silicones. J Phys Chem Lett, 2021, 12(39), 9672 doi: 10.1021/acs.jpclett.1c02611[20] Al-Ashouri A, Köhnen E, Li B, et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science, 2020, 370(6522), 1300 doi: 10.1126/science.abd4016[21] Geng X S, Wang F W, Tian H, et al. Ultrafast photodetector by integrating perovskite directly on silicon wafer. ACS Nano, 2020, 14(3), 2860 doi: 10.1021/acsnano.9b06345[22] Wu T J, Pisula W, Rashid M Y A, et al. Application of perovskite-structured materials in field-effect transistors. Adv Elect Materials, 2019, 5(12), 1900444 doi: 10.1002/aelm.201900444[23] Rahimi F, Jafari A K, Hsu C A, et al. Selective sensing in perovskite-based image sensors. Org Electron, 2019, 75, 105397 doi: 10.1016/j.orgel.2019.105397[24] Yan M X, Tian H J, Yang D R, et al. Improved efficiency for silicon-based perovskite light-emitting diodes via interfacial hydrophilic modification. Adv Materials Inter, 2021, 8(21), 2101448 doi: 10.1002/admi.202101448[25] Baeva M, Gets D, Polushkin A, et al. ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection. Opto Electron Adv, 2023, 6(9), 220154 doi: 10.29026/oea.2023.220154[26] Prescher C, Prakapenka V B. DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press Res, 2015, 35(3), 223 doi: 10.1080/08957959.2015.1059835[27] Doebelin N, Kleeberg R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J Appl Crystallogr, 2015, 48(Pt 5), 1573[28] Suturin S M, Fedorov V V, Korovin A M, et al. A look inside epitaxial cobalt-on-fluorite nanoparticles with three-dimensional reciprocal space mapping using GIXD, RHEED and GISAXS. J Appl Crystallogr, 2013, 46(4), 874 doi: 10.1107/S0021889813008777[29] Phung N, Mattoni A, Smith J A, et al. Photoprotection in metal halide perovskites by ionic defect formation. Joule, 2022, 6(9), 2152 doi: 10.1016/j.joule.2022.06.029[30] Neplokh V, Kochetkov F M, Deriabin K V, et al. Modified silicone rubber for fabrication and contacting of flexible suspended membranes of n-/p-GaP nanowires with a single-walled carbon nanotube transparent contact. J Mater Chem C, 2020, 8(11), 3764 doi: 10.1039/C9TC06239D[31] Liao K J, Li C B, Xie L S, et al. Hot-casting large-grain perovskite film for efficient solar cells: Film formation and device performance. Nanomicro Lett, 2020, 12(1), 156[32] Ummadisingu A, Meloni S, Mattoni A, et al. Crystal-size-induced band gap tuning in perovskite films. Angew Chem Int Ed, 2021, 60(39), 21368 doi: 10.1002/anie.202106394[33] Toso S, Baranov D, Giannini C, et al. Wide-angle X-ray diffraction evidence of structural coherence in CsPbBr3 nanocrystal superlattices. ACS Mater Lett, 2019, 1(2), 272 doi: 10.1021/acsmaterialslett.9b00217[34] Veeramuthu L, Liang F C, Zhang Z X, et al. Improving the performance and stability of perovskite light-emitting diodes by a polymeric nanothick interlayer-assisted grain control process. ACS Omega, 2020, 5(15), 8972 doi: 10.1021/acsomega.0c00758[35] Warby J H, Wenger B, Ramadan A J, et al. Revealing factors influencing the operational stability of perovskite light-emitting diodes. ACS Nano, 2020, 14(7), 8855 doi: 10.1021/acsnano.0c03516[36] Morozov I, Gudovskikh A, Uvarov A, et al. The study of latex sphere lithography for high aspect ratio dry silicon etching. Phys Status Solidi A, 2020, 217(4), 1900535 doi: 10.1002/pssa.201900535[37] Morozov I, Gudovskikh A, Uvarov A, et al. The study of latex sphere lithography for high aspect ratio dry silicon etching. Phys Status Solidi A, 2020, 217(4), 1900535 doi: 10.1002/pssa.201900535[38] Vyacheslavova E A, Morozov I A, Kudryashov D A, et al. Formation of SiO2 hard mask using dry etching and nanosphere lithography. J Phys: Conf Ser, 2020, 1697(1), 012188 doi: 10.1088/1742-6596/1697/1/012188[39] Neplokh V, Kochetkov F M, Deriabin K V, et al. Modified silicone rubber for fabrication and contacting of flexible suspended membranes of n-/p-GaP nanowires with a single-walled carbon nanotube transparent contact. J Mater Chem C, 2020, 8(11), 3764 doi: 10.1039/C9TC06239D[40] Kochetkov F M, Neplokh V, Fedorov V V, et al. Fabrication and electrical study of large area free-standing membrane with embedded GaP NWs for flexible devices. Nanotechnology, 2020, 31(46), 46LT01 doi: 10.1088/1361-6528/abae98[41] Fedorov V V, Bolshakov A, Sergaeva O, et al. Gallium phosphide nanowires in a free-standing, flexible, and semitransparent membrane for large-scale infrared-to-visible light conversion. ACS Nano, 2020, 14(8), 10624 doi: 10.1021/acsnano.0c04872[42] Tian Y, Timmermans M Y, Partanen M, et al. Growth of single-walled carbon nanotubes with controlled diameters and lengths by an aerosol method. Carbon, 2011, 49(14), 4636 doi: 10.1016/j.carbon.2011.06.036[43] Khabushev E M, Kolodiazhnaia J V, Krasnikov D V, et al. Activation of catalyst particles for single-walled carbon nanotube synthesis. Chem Eng J, 2021, 413, 127475 doi: 10.1016/j.cej.2020.127475[44] Mkrtchyan A A, Gladush Y G, Galiakhmetova D, et al. Dry-transfer technique for polymer-free single-walled carbon nanotube saturable absorber on a side polished fiber. Opt Mater Express, 2019, 9(4), 1551 doi: 10.1364/OME.9.001551[45] Nasibulin A G, Kaskela A, Mustonen K, et al. Multifunctional free-standing single-walled carbon nanotube films. ACS Nano, 2011, 5(4), 3214 doi: 10.1021/nn200338r[46] Chen D Z, Li X Y, Su A X, et al. Performance enhancement of perovskite solar cells via material quality improvement assisted by MAI/IPA solution post-treatment. Dalton Trans, 2019, 48(16), 5292 doi: 10.1039/C9DT00930B[47] Jia P, Lu M, Sun S Q, et al. Recent advances in flexible perovskite light-emitting diodes. Adv Materials Inter, 2021, 8(17), 2100441 doi: 10.1002/admi.202100441[48] Calarco R, Stoica T, Brandt O, et al. Surface-induced effects in GaN nanowires. J Mater Res, 2011, 26(17), 2157 doi: 10.1557/jmr.2011.211[49] Kochetkov F M, Neplokh V, Fedorov V V, et al. Fabrication and electrical study of large area free-standing membrane with embedded GaP NWs for flexible devices. Nanotechnology, 2020, 31(46), 46LT01 doi: 10.1088/1361-6528/abae98[50] Baeva M, Miroshnichenko A S, Kenesbay R, et al. Enhancing the CsPbBr3 PeLEC properties via PDMS/PMHS double-layer polymer encapsulation and high relative humidity stress-aging. J Mater Chem C, 2023, 11(43), 15261 doi: 10.1039/D3TC01370G[51] Ghaithan H M, Alahmed Z A, Qaid S M H, et al. Density functional study of cubic, tetragonal, and orthorhombic CsPbBr3 perovskite. ACS Omega, 2020, 5(13), 7468 doi: 10.1021/acsomega.0c00197[52] Liu C, Chen H, Lin P, et al. Growth, characterization and photoelectrical properties of orthorhombic and cubic CsPbBr3 single crystals. J Mater Sci Mater Electron, 2022, 33(32), 24895 doi: 10.1007/s10854-022-09199-1[53] Suturin S M, Fedorov V V, Korovin A M, et al. A look inside epitaxial cobalt-on-fluorite nanoparticles with three-dimensional reciprocal space mapping using GIXD, RHEED and GISAXS. J Appl Crystallogr, 2013, 46(Pt 4), 874[54] Stoumpos C C, Malliakas C D, Peters J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: A new material for high-energy radiation detection. Cryst Growth Des, 2013, 13(7), 2722 doi: 10.1021/cg400645t[55] De Bastiani M, Dursun I, Zhang Y H, et al. Inside perovskites: Quantum luminescence from bulk Cs4PbBr6 single crystals. Chem Mater, 2017, 29(17), 7108 doi: 10.1021/acs.chemmater.7b02415[56] Baitova V A, Knyazeva M A, Mukanov I A, et al. Evolution of the luminescence properties of single CsPbBr3 perovskite nanocrystals during photodegradation. JETP Lett, 2023, 118(8), 560 doi: 10.1134/S002136402360283X[57] Han Q J, Wu W Z, Liu W L, et al. The peak shift and evolution of upconversion luminescence from CsPbBr3 nanocrystals under femtosecond laser excitation. RSC Adv, 2017, 7(57), 35757 doi: 10.1039/C7RA06211G -
Proportional views