Citation: |
Jianhua Zhang, Xufeng Liao, Weisheng Li, Yutian Tian, Qinyang Huang, Yitong Ji, Guotang Hu, Qingguo Du, Wenchao Huang, Donghoe Kim, Yi-Bing Cheng, Jinhui Tong. Minimizing tin (Ⅱ) oxidation using ethylhydrazine oxalate for high-performance all-perovskite tandem solar cells[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/24120026
****
J H Zhang, X F Liao, W S Li, Y T Tian, Q Y Huang, Y T Ji, G T Hu, Q G Du, W C Huang, D Kim, Y B Cheng, and J H Tong, Minimizing tin (Ⅱ) oxidation using ethylhydrazine oxalate for high-performance all-perovskite tandem solar cells[J]. J. Semicond., 2025, 46(5), 052802 doi: 10.1088/1674-4926/24120026
|
Minimizing tin (Ⅱ) oxidation using ethylhydrazine oxalate for high-performance all-perovskite tandem solar cells
DOI: 10.1088/1674-4926/24120026
CSTR: 32376.14.1674-4926.24120026
More Information-
Abstract
All-perovskite tandem solar cells (ATSCs) have the potential to surpass the Shockley−Queisser efficiency limit of conventional single-junction devices. However, the performance and stability of mixed tin–lead (Sn–Pb) perovskite solar cells (PSCs), which are crucial components of ATSCs, are much lower than those of lead-based perovskites. The primary challenges include the high crystallization rate of perovskite materials and the susceptibility of Sn2+ oxidation, which leads to rough morphology and unfavorable p-type self-doping. To address these issues, we introduced ethylhydrazine oxalate (EDO) at the perovskite interface, which effectively inhibits the oxidation of Sn2+ and simultaneously enhances the crystallinity of the perovskite. Consequently, the EDO-modified mixed tin−lead PSCs reached a power conversion efficiency (PCE) of 21.96% with high reproducibility. We further achieved a 27.58% efficient ATSCs by using EDO as interfacial passivator in the Sn−Pb PSCs. -
References
[1] Sutherland B R, Sargent E H. Perovskite photonic sources. Nat Photonics, 2016, 10, 295 doi: 10.1038/nphoton.2016.62[2] Tu Q, Spanopoulos I, Hao S Q, et al. Out-of-plane mechanical properties of 2D hybrid organic-inorganic perovskites by nanoindentation. ACS Appl Mater Interfaces, 2018, 10(26), 22167 doi: 10.1021/acsami.8b05138[3] Lee J W, Lee D K, Jeong D N, et al. Control of crystal growth toward scalable fabrication of perovskite solar cells. Adv Funct Materials, 2019, 29(47), 1807047 doi: 10.1002/adfm.201807047[4] Zhao D W, Yu Y, Wang C L, et al. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat Energy, 2017, 2(4), 17018 doi: 10.1038/nenergy.2017.18[5] Best research−cell efficiency chart. Available from: https://www.nrel.gov/pv/cell−efficiency.html.[6] Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 1961, 32(3), 510 doi: 10.1063/1.1736034[7] Hu M Y, Chen M, Guo P J, et al. Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability. Nat Commun, 2020, 11(1), 151 doi: 10.1038/s41467-019-13908-6[8] Sha W, Ren X G, Chen L Z, et al. The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl Phys Lett, 2015, 106(22), 221104 doi: 10.1063/1.4922150[9] Zhou S, Fu S Q, Wang C, et al. Aspartate all-in-one doping strategy enables efficient all-perovskite tandems. Nature, 2023, 624(7990), 69 doi: 10.1038/s41586-023-06707-z[10] He R, Wang W H, Yi Z J, et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature, 2023, 618(7963), 80 doi: 10.1038/s41586-023-05992-y[11] Yu D N, Pan M L, Liu G Q, et al. Electron-withdrawing organic ligand for high-efficiency all-perovskite tandem solar cells. Nat Energy, 2024, 9, 298 doi: 10.1038/s41560-023-01441-2[12] Gu S, Lin R X, Han Q L, et al. Tin and mixed lead-tin halide perovskite solar cells: Progress and their application in tandem solar cells. Adv Mater, 2020, 32(27), e1907392 doi: 10.1002/adma.201907392[13] Zhang Z H, Huang Y F, Jin J L, et al. Mechanistic understanding of oxidation of tin-based perovskite solar cells and mitigation strategies. Angew Chem Int Ed, 2023, 62(45), e202308093 doi: 10.1002/anie.202308093[14] Yoo J J, Seo G, Chua M R, et al. Efficient perovskite solar cells via improved carrier management. Nature, 2021, 590(7847), 587 doi: 10.1038/s41586-021-03285-w[15] Xiao K, Lin R X, Han Q L, et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat Energy, 2020, 5, 870 doi: 10.1038/s41560-020-00705-5[16] Qin M C, Chan P F, Lu X H. A systematic review of metal halide perovskite crystallization and film formation mechanism unveiled by in situ GIWAXS. Adv Mater, 2021, 33(51), 2105290 doi: 10.1002/adma.202105290[17] Li B, Chang B H, Pan L, et al. Tin-based defects and passivation strategies in tin-related perovskite solar cells. ACS Energy Lett, 2020, 5(12), 3752 doi: 10.1021/acsenergylett.0c01796[18] Wang F, Ma J L, Xie F Y, et al. Organic cation-dependent degradation mechanism of organotin halide perovskites. Adv Funct Mater, 2016, 26(20), 3417 doi: 10.1002/adfm.201505127[19] Kapil G, Bessho T, Ng C H, et al. Strain relaxation and light management in tin–lead perovskite solar cells to achieve high efficiencies. ACS Energy Lett, 2019, 4(8), 1991 doi: 10.1021/acsenergylett.9b01237[20] Lv S S, Gao W Y, Liu Y H, et al. Stability of Sn-Pb mixed organic–inorganic halide perovskite solar cells: Progress, challenges, and perspectives. J Energy Chem, 2022, 65, 371 doi: 10.1016/j.jechem.2021.06.011[21] Lin R X, Xiao K, Qin Z Y, et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nat Energy, 2019, 4, 864 doi: 10.1038/s41560-019-0466-3[22] Zong Y X, Zhou Z M, Chen M, et al. Lewis-adduct mediated grain-boundary functionalization for efficient ideal-bandgap perovskite solar cells with superior stability. Adv Energy Mater, 2018, 8(27), 1800997 doi: 10.1002/aenm.201800997[23] Wang J T, Uddin M A, Chen B, et al. Enhancing photostability of Sn-Pb perovskite solar cells by an alkylammonium pseudo-halogen additive. Adv Energy Mater, 2023, 13(15), 2204115 doi: 10.1002/aenm.202204115[24] Hu S F, Otsuka K, Murdey R, et al. Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy Environ Sci, 2022, 15(5), 2096 doi: 10.1039/D2EE00288D[25] Wei M Y, Xiao K, Tan H R, et al. Combining efficiency and stability in mixed tin-lead perovskite solar cells by capping grains with an ultra-thin 2D layer. Adv Mater, 2020, 32(12), 1907058 doi: 10.1002/adma.201907058[26] Kapil G, Bessho T, Maekawa T, et al. Tin-lead perovskite fabricated via ethylenediamine interlayer guides to the solar cell efficiency of 21.74%. Adv Energy Mater, 2021, 11(25), 2101069 doi: 10.1002/aenm.202101069[27] Li X, Chen C C, Cai M L, et al. Efficient passivation of hybrid perovskite solar cells using organic dyes with –COOH functional group. Adv Energy Mater, 2018, 8(20), 1800715 doi: 10.1002/aenm.201800715[28] Liu H, Wang L X, Li R J, et al. Modulated crystallization and reduced VOC deficit of mixed lead–tin perovskite solar cells with antioxidant caffeic acid. ACS Energy Lett, 2021, 6(8), 2907 doi: 10.1021/acsenergylett.1c01217[29] Xing Y J, Xiong J X, Wang Q X, et al. Selection of phenyl hydrazine derivatives as an Sn4+ reductant for tin–lead perovskite solar cells. J Mater Chem C, 2024, 12(28), 10585 doi: 10.1039/D4TC00719K[30] Cao J P, Loi H L, Xu Y, et al. High-performance tin-lead mixed-perovskite solar cells with vertical compositional gradient. Adv Mater, 2022, 34(6), e2107729 doi: 10.1002/adma.202107729[31] Bergmann V W, Weber S A L, Javier Ramos F, et al. Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat Commun, 2014, 5, 5001 doi: 10.1038/ncomms6001[32] Ogomi Y, Morita A, Tsukamoto S, et al. CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm. J Phys Chem Lett, 2014, 5(6), 1004 doi: 10.1021/jz5002117[33] Ye S Y, Rao H X, Zhao Z R, et al. A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. J Am Chem Soc, 2017, 139(22), 7504 doi: 10.1021/jacs.7b01439[34] Chen W J, Liu S, Li Q Q, et al. High-polarizability organic ferroelectric materials doping for enhancing the built-In electric field of perovskite solar cells realizing efficiency over 24%. Adv Mater, 2022, 34(14), 2110482 doi: 10.1002/adma.202110482[35] Shen W C, Fang H Y, Pu D X, et al. Optimizing blade-coated tin–lead perovskite solar cells and tandems with multi-carboxyl and amino group integration. Adv Funct Mater, 2024, 34(52), 2410605 doi: 10.1002/adfm.202410605[36] Shen W C, Azmy A, Li G, et al. A crystalline 2D fullerene-based metal halide semiconductor for efficient and stable ideal-bandgap perovskite solar cells. Adv Energy Mater, 2024, 14(23), 2400582 doi: 10.1002/aenm.202400582[37] Le Corre V M, Duijnstee E A, El Tambouli O, et al. Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett, 2021, 6(3), 1087 doi: 10.1021/acsenergylett.0c02599[38] Zhang W J, Huang L S, Guan H L, et al. Bottom-up modification boosts the performance of narrow-bandgap lead–tin perovskite single-junction and tandem solar cells. Energy Environ Sci, 2023, 16(12), 5852 doi: 10.1039/D3EE02010J[39] Zhang S S, Hosseini S M, Gunder R, et al. The role of bulk and interface recombination in high-efficiency low-dimensional perovskite solar cells. Adv Mater, 2019, 31(30), e1901090 doi: 10.1002/adma.201901090 -
Supplements
24120026Supporting_Information.pdf
-
Proportional views