Citation: |
Bingkun Wang, Jinqiu Zhang, Huijuan Wu, Fanghao Zhu, Shanshui Lian, Genqiang Cao, Hui Ma, Xurui Hu, Li Zheng, Gang Wang. Review on three-dimensional graphene: synthesis and joint photoelectric regulation in photodetectors[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25010015
****
B K Wang, J Q Zhang, H J Wu, F H Zhu, S S Lian, G Q Cao, H Ma, X R Hu, L Zheng, and G Wang, Review on three-dimensional graphene: synthesis and joint photoelectric regulation in photodetectors[J]. J. Semicond., 2025, 46(7), 071401 doi: 10.1088/1674-4926/25010015
|
Review on three-dimensional graphene: synthesis and joint photoelectric regulation in photodetectors
DOI: 10.1088/1674-4926/25010015
CSTR: 32376.14.1674-4926.25010015
More Information-
Abstract
Graphene has garnered significant attention in photodetection due to its exceptional optical, electrical, mechanical, and thermal properties. However, the practical application of two-dimensional (2D) graphene in optoelectronic fields is limited by its weak light absorption (only 2.3%) and zero bandgap characteristics. Increasing light absorption is a critical scientific challenge for developing high-performance graphene-based photodetectors. Three-dimensional (3D) graphene comprises vertically grown stacked 2D-graphene layers and features a distinctive porous structure. Unlike 2D-graphene, 3D-graphene offers a larger specific surface area, improved electrochemical activity, and high chemical stability, making it a promising material for optoelectronic detection. Importantly, 3D-graphene has an optical microcavity structure that enhances light absorption through interaction with incoming light. This paper systematically reviews and analyzes the current research status and challenges of 3D-graphene-based photodetectors, aiming to explore feasible development paths for these devices and promote their industrial application.-
Keywords:
- 3D-graphene,
- growth techniques,
- heterojunctions,
- photodetectors
-
References
[1] Liang S, Wang F F, Ma Z, et al. Asymmetric light excitation for photodetectors based on nanoscale semiconductors. ACS Nano, 2017, 11(1), 549 doi: 10.1021/acsnano.6b06598[2] Hu X, Wu J H, Wu M Z, et al. Recent developments of infrared photodetectors with low-dimensional inorganic nanostructures. Nano Res, 2022, 15(2), 805 doi: 10.1007/s12274-021-3634-2[3] Pan Q, Su M, Zhang Z Y, et al. Omnidirectional photodetectors based on spatial resonance asymmetric facade via a 3D self-standing strategy. Advanced Materials, 2020, 32, 1907280 doi: 10.1002/adma.201907280[4] Chen M, Wang Y X, Zhao Z R. Monolithic metamaterial-integrated graphene terahertz photodetector with wavelength and polarization selectivity. ACS Nano, 2022, 16(10), 17263 doi: 10.1021/acsnano.2c07968[5] Gayduchenko I, Xu S G, Alymov G, et al. Tunnel field-effect transistors for sensitive terahertz detection. Nat Commun, 2021, 12(1), 543 doi: 10.1038/s41467-020-20721-z[6] He X W, Wang X, Nanot S, et al. Photothermoelectric p-n junction photodetector with intrinsic broadband polarimetry based on macroscopic carbon nanotube films. ACS Nano, 2013, 7(8), 7271 doi: 10.1021/nn402679u[7] Li L L, Xu H, Li Z X, et al. CMOS-compatible tellurium/silicon ultra-fast near-infrared photodetector. Small, 2023, 19(42), 2303114 doi: 10.1002/smll.202303114[8] Wei B B, Zou B Q, Liu J X, et al. Polarization-sensitive photodetector based on quasi-1D (TaSe4)2I nanowire response to 10.6 µm. Adv Funct Materials, 2024, 34(30), 2315194 doi: 10.1002/adfm.202315194[9] He Z Y, Du X Y, Yu X, et al. Reverse-distribution phase featured gradient heterojunction: A universal strategy to realize high-performance near-infrared organic photodetectors for real-time arterial monitoring. Nano Energy, 2023, 114, 108673 doi: 10.1016/j.nanoen.2023.108673[10] Zhou Y C, Yang J, Bai L, et al. Flexible phase change hydrogels for mid-/low-temperature infrared stealth. Chemical Engineering Journal, 2022, 446, 137463 doi: 10.1016/j.cej.2022.137463[11] Zhou Z Q, Shen T, Wang P, et al. Low symmetric sub-wavelength array enhanced lensless polarization-sensitivity photodetector of germanium selenium. Sci Bull, 2023, 68(2), 173 doi: 10.1016/j.scib.2023.01.013[12] Wang F, Zhang T, Xie R, et al. Next-generation photodetectors beyond van der waals junctions. Adv Mater, 2024, 36(3), e2301197 doi: 10.1002/adma.202301197[13] Gao L F, Zhao Y M, Chang X H, et al. Emerging applications of MXenes for photodetection: Recent advances and future challenges. Mater Today, 2022, 61, 169 doi: 10.1016/j.mattod.2022.10.022[14] Pan X Y, Ding L M. Application of metal halide perovskite photodetectors. J Semicond, 2022, 43(2), 020203 doi: 10.1088/1674-4926/43/2/020203[15] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666 doi: 10.1126/science.1102896[16] Zhao C C, Liu Y Y, Wang D B, et al. High-performance self-driven broadband photoelectrochemical photodetector based on reduced graphene oxide/Bi2Te3 heterojunction. Nano Mater Sci, 2024, 6(6), 741 doi: 10.1016/j.nanoms.2023.12.008[17] Echtermeyer T J, Britnell L, Jasnos P K, et al. Strong plasmonic enhancement of photovoltage in graphene. Nat Commun, 2011, 2, 458 doi: 10.1038/ncomms1464[18] Chang H X, Wu H K. Graphene-based nanomaterials: Synthesis, properties, and optical and optoelectronic applications. Adv Funct Materials, 2013, 23(16), 1984 doi: 10.1002/adfm.201202460[19] Sinitskii A. A recipe for nanoporous graphene. Science, 2018, 360(6385), 154 doi: 10.1126/science.aat5117[20] Li P L, Wei W Y, Zhang M, et al. Wafer-scale growth of single-crystal graphene on vicinal Ge(001) substrate. Nano Today, 2020, 34, 100908 doi: 10.1016/j.nantod.2020.100908[21] Zhang X, Jing Q, Ao S, et al. Ultrasensitive field-effect biosensors enabled by the unique electronic properties of graphene. Small, 2020, 16(15), e1902820 doi: 10.1002/smll.201902820[22] Koepfli S M, Baumann M, Koyaz Y, et al. Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz. Science, 2023, 380(6650), 1169 doi: 10.1126/science.adg8017[23] Du S C, Lu W, Ali A, et al. A broadband fluorographene photodetector. Adv Mater, 2017, 29(22), 1700463 doi: 10.1002/adma.201700463[24] Biccari F, Gabelloni F, Burzi E, et al. Graphene-based electron transport layers in perovskite solar cells: A step-up for an efficient carrier collection. Adv Energy Mater, 2017, 7(22), 1701349 doi: 10.1002/aenm.201701349[25] Agresti A, Pescetelli S, Cinà L, et al. Efficiency and stability enhancement in perovskite solar cells by inserting lithium-neutralized graphene oxide as electron transporting layer. Adv Funct Materials, 2016, 26(16), 2686 doi: 10.1002/adfm.201504949[26] Du S C, Xie H, Yin J X, et al. Giant hot electron thermalization via stacking of graphene layers. Carbon, 2023, 203, 835 doi: 10.1016/j.carbon.2022.12.017[27] Sassi U, Parret R, Nanot S, et al. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance. Nat Commun, 2017, 8, 14311 doi: 10.1038/ncomms14311[28] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881), 1308 doi: 10.1126/science.1156965[29] Elias D C, Nair R R, Mohiuddin T G, et al. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science, 2009, 323(5914), 610 doi: 10.1126/science.1167130[30] Castro E V, Novoselov K S, Morozov S V, et al. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys Rev Lett, 2007, 99(21), 216802 doi: 10.1103/PhysRevLett.99.216802[31] Yin J B, Wang H, Peng H, et al. Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity. Nat Commun, 2016, 7, 10699 doi: 10.1038/ncomms10699[32] Peng Y Y, Zhao W W, Ni F, et al. Forest-like laser-induced graphene film with ultrahigh solar energy utilization efficiency. ACS Nano, 2021, 15(12), 19490 doi: 10.1021/acsnano.1c06277[33] Zhang Q Q, You X, Tian L, et al. Fabrication and efficient electromagnetic waves attenuation of three-dimensional porous reduced graphene oxide/boron nitride/silicon carbide hierarchical structures. J Mater Sci Technol, 2023, 155, 192 doi: 10.1016/j.jmst.2022.12.056[34] Deng T, Zhang Z H, Liu Y X, et al. Three-dimensional graphene field-effect transistors as high-performance photodetectors. Nano Lett, 2019, 19(3), 1494 doi: 10.1021/acs.nanolett.8b04099[35] Olatomiwa A L, Adam T, Gopinath S C B, et al. Graphene synthesis, fabrication, characterization based on bottom-up and top-down approaches: An overview. J Semicond, 2022, 43(6), 061101 doi: 10.1088/1674-4926/43/6/061101[36] Shivananju B N, Yu W, Liu Y, et al. The roadmap of graphene-based optical biochemical sensors. Adv Funct Materials, 2016, 27, 1603918[37] Cheng H H, Zhao F, Xue J L, et al. One single graphene oxide film for responsive actuation. ACS Nano, 2016, 10(10), 9529 doi: 10.1021/acsnano.6b04769[38] Fratzl P, Barth F G. Biomaterial systems for mechanosensing and actuation. Nature, 2009, 462(7272), 442 doi: 10.1038/nature08603[39] Ma T, Gao H L, Cong H P, et al. A bioinspired interface design for improving the strength and electrical conductivity of graphene-based fibers. Adv Mater, 2018, 30(15), 1706435 doi: 10.1002/adma.201706435[40] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials. Nature, 2006, 442(7100), 282 doi: 10.1038/nature04969[41] Sadasivuni K K, Ponnamma D, Thomas S, et al. Evolution from graphite to graphene elastomer composites. Prog Polym Sci, 2014, 39(4), 749 doi: 10.1016/j.progpolymsci.2013.08.003[42] Li G Z, Huang B, Pan Z F, et al. Advances in three-dimensional graphene-based materials: Configurations, preparation and application in secondary metal (Li, Na, K, Mg, Al)-ion batteries. Energy Environ Sci, 2019, 12(7), 2030 doi: 10.1039/C8EE03014F[43] D’Apuzzo F, Piacenti A R, Giorgianni F, et al. Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene. Nat Commun, 2017, 8, 14885 doi: 10.1038/ncomms14885[44] Shi J L, Wang H F, Zhu X L, et al. The nanostructure preservation of 3D porous graphene: New insights into the graphitization and surface chemistry of non-stacked double-layer templated graphene after high-temperature treatment. Carbon, 2016, 103, 36 doi: 10.1016/j.carbon.2016.03.002[45] Ma Y F, Chen Y S. Three-dimensional graphene networks: Synthesis, properties and applications. Natl Sci Rev, 2015, 2(1), 40 doi: 10.1093/nsr/nwu072[46] Ando Y, Zhao X, Ohkohchi M. Production of petal-like graphite sheets by hydrogen arc discharge. Carbon, 1997, 35(1), 153 doi: 10.1016/S0008-6223(96)00139-X[47] Wu Y, Qiao P, Chong T, et al. Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Adv Mater, 2002, 14(1), 64 doi: 10.1002/1521-4095(20020104)14:1<64::AID-ADMA64>3.0.CO;2-G[48] Zhao J, Shaygan M, Eckert J, et al. A growth mechanism for free-standing vertical graphene. Nano Lett, 2014, 14(6), 3064 doi: 10.1021/nl501039c[49] Akhavan O, Ghaderi E, Rahighi R. Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano, 2012, 6(4), 2904 doi: 10.1021/nn300261t[50] Zhang L X, Sun Z, Qi J L, et al. Understanding the growth mechanism of vertically aligned graphene and control of its wettability. Carbon, 2016, 103, 339 doi: 10.1016/j.carbon.2016.03.029[51] Hojati-Talemi P, Simon G P. Field emission study of graphene nanowalls prepared by microwave-plasma method. Carbon, 2011, 49(8), 2875 doi: 10.1016/j.carbon.2011.03.004[52] Tang B, Wang S L, Zhang J, et al. Three-dimensional graphene monolith-based composite: Superiority in properties and applications. Int Mater Rev, 2018, 63(3), 204 doi: 10.1080/09506608.2017.1344377[53] Jin S X, Feng Y Y, Jia J C, et al. Three-dimensional N-doped carbon nanotube/graphene composite aerogel anode to develop high-power microbial fuel cell. Energy Environ Mater, 2023, 6(3), e12373 doi: 10.1002/eem2.12373[54] Yang Y, Liu T Y, Liao Q, et al. A three-dimensional nitrogen-doped graphene aerogel-activated carbon composite catalyst that enables low-cost microfluidic microbial fuel cells with superior performance. J Mater Chem A, 2016, 4(41), 15913 doi: 10.1039/C6TA05002F[55] Zhang Z Y, Li W Y, Yuen M F, et al. Hierarchical composite structure of few-layers MoS2 nanosheets supported by vertical graphene on carbon cloth for high-performance hydrogen evolution reaction. Nano Energy, 2015, 18, 196 doi: 10.1016/j.nanoen.2015.10.014[56] Ye S B, Feng J C. Towards three-dimensional, multi-functional graphene-based nanocomposite aerogels by hydrophobicity-driven absorption. J Mater Chem A, 2014, 2(27), 10365 doi: 10.1039/c4ta01392a[57] Zheng X L, Xiong X, Yang J W, et al. A strong and compressible three dimensional graphene/polyurushiol composite for efficient water cleanup. Chem Eng J, 2018, 333, 153 doi: 10.1016/j.cej.2017.09.146[58] Sun S M, Wang S, Li S D, et al. Asymmetric supercapacitors based on a NiCo2O4/three dimensional graphene composite and three dimensional graphene with high energy density. J Mater Chem A, 2016, 4(47), 18646 doi: 10.1039/C6TA07746C[59] Zhao X Y, Li X L, Zhang S L, et al. A three-dimensional sponge of graphene nanoribbons crosslinked by Fe3O4 nanoparticles for Li+ storage. J Mater Chem A, 2017, 5(45), 23592 doi: 10.1039/C7TA07874A[60] He M L, Wu L Y, Yu A L, et al. Surface functionalization of vertical graphene significantly enhances the energy storage capability for symmetric supercapacitors. Carbon, 2024, 216, 118511 doi: 10.1016/j.carbon.2023.118511[61] Ma J H, Wang P, Dong L, et al. Highly conductive, mechanically strong graphene monolith assembled by three-dimensional printing of large graphene oxide. J Colloid Interface Sci, 2019, 534, 12 doi: 10.1016/j.jcis.2018.08.096[62] Mo Y C, Yang K C, Lin J S, et al. CoSe2 anchored vertical graphene/macroporous carbon nanofibers used as multifunctional interlayers for high-performance lithium–sulfur batteries. J Mater Chem A, 2023, 11(12), 6349 doi: 10.1039/D2TA10020G[63] Wang S, Wang X, Sun C L, et al. Room-temperature fast assembly of 3D macroscopically porous graphene frameworks for binder-free compact supercapacitors with high gravimetric and volumetric capacitances. J Energy Chem, 2021, 61, 23 doi: 10.1016/j.jechem.2021.01.019[64] Rajackaitė E, Peckus D, Gudaitis R, et al. The evolution of properties with deposition time of vertical graphene nanosheets produced by microwave plasma-enhanced chemical vapor deposition. Surf Interfaces, 2021, 27, 101529 doi: 10.1016/j.surfin.2021.101529[65] Hiramatsu M, Shiji K, Amano H, et al. Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Appl Phy Lett, 2004, 84(23), 4708 doi: 10.1063/1.1762702[66] Ma Y, Chaitoglou S, Farid G, et al. Supercapacitive performance of electrodes based on defective ZnO nanorods anchored on graphene nanowalls. Chem Eng J, 2024, 488, 151135 doi: 10.1016/j.cej.2024.151135[67] Qi Y, Deng B, Guo X, et al. Switching vertical to horizontal graphene growth using faraday cage-assisted PECVD approach for high-performance transparent heating device. Adv Mater, 2018, 30, 1704839 doi: 10.1002/adma.201704839[68] Li J R, Liu Z D, Guo Q L, et al. Controllable growth of vertically oriented graphene for high sensitivity gas detection. J Mater Chem C, 2019, 7(20), 5995 doi: 10.1039/C9TC01246J[69] Li J R, Guo Q L, Zhang N, et al. Direct integration of polycrystalline graphene on silicon as a photodetector via plasma-assisted chemical vapor deposition. J Mater Chem C, 2018, 6(36), 9682 doi: 10.1039/C8TC02646G[70] Xu S C, Wang S S, Chen Z, et al. Electric-field-assisted growth of vertical graphene arrays and the application in thermal interface materials. Adv Funct Materials, 2020, 30(34), 2003302 doi: 10.1002/adfm.202003302[71] Davami K, Shaygan M, Kheirabi N, et al. Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition. Carbon, 2014, 72, 372 doi: 10.1016/j.carbon.2014.02.025[72] He Z Y, Zhang G L, Zhang S, et al. Resonant nanocavity-enhanced graphene photodetectors on reflecting silicon-on-insulator wafers. Appl Phys Lett, 2021, 119(23), 232104 doi: 10.1063/5.0074703[73] Simionescu O G, Avram A, Adiaconiţă B, et al. Field-effect transistors based on single-layer graphene and graphene-derived materials. Micromachines, 2023, 14(6), 1096 doi: 10.3390/mi14061096[74] Seehra M S, Narang V, Geddam U K, et al. Correlation between X-ray diffraction and Raman spectra of 16 commercial graphene-based materials and their resulting classification. Carbon, 2017, 111, 380 doi: 10.1016/j.carbon.2016.10.010[75] Evlashin S, Svyakhovskiy S, Suetin N, et al. Optical and IR absorption of multilayer carbon nanowalls. Carbon, 2014, 70, 111 doi: 10.1016/j.carbon.2013.12.079[76] Zhang G L, Wang B K, Wu H J, et al. Nitrogen-doped 3D-graphene advances near-infrared photodetector for logic circuits and image sensors overcoming 2D limitations. Nano Lett, 2024, 24(33), 10062 doi: 10.1021/acs.nanolett.4c01917[77] Yu L Y, Zhang S, Zhang G L, et al. Dual-enhanced photodetectors combining graphene plasmonic nanoresonators with germanium-on-insulator optical cavities. IEEE Trans Electron Devices, 2022, 69(6), 3246 doi: 10.1109/TED.2022.3168528[78] Liu J, Li X Y, Wang Q, et al. A new 3D Dirac nodal-line semi-metallic graphene monolith for lithium ion battery anode materials. J Mater Chem A, 2018, 6(28), 13816 doi: 10.1039/C8TA04428G[79] Fang X Y, Yu X X, Zheng H M, et al. Temperature- and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Phys Lett A, 2015, 379(37), 2245 doi: 10.1016/j.physleta.2015.06.063[80] Li H, Shi Y C, Shang H, et al. Atomic-scale tuning of graphene/cubic SiC Schottky junction for stable low-bias photoelectrochemical solar-to-fuel conversion. ACS Nano, 2020, 14(4), 4905 doi: 10.1021/acsnano.0c00986[81] Bai Z Q, Xiao Y, Luo Q, et al. Highly tunable carrier tunneling in vertical graphene-WS2-graphene van der waals heterostructures. ACS Nano, 2022, 16(5), 7880 doi: 10.1021/acsnano.2c00536[82] Lu Y H, Feng S R, Wu Z Q, et al. Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity. Nano Energy, 2018, 47, 140 doi: 10.1016/j.nanoen.2018.02.056[83] Heo J H, Shin D H, Kim S, et al. Highly efficient CH3NH3PbI3 perovskite solar cells prepared by AuCl3-doped graphene transparent conducting electrodes. Chem Eng J, 2017, 323, 153 doi: 10.1016/j.cej.2017.04.097[84] Li H, Wu J B, Ran F R, et al. Interfacial interactions in van der waals heterostructures of MoS2 and graphene. ACS Nano, 2017, 11(11), 11714 doi: 10.1021/acsnano.7b07015[85] Shao Q G, Qi H, Li C, et al. Recent progress of gr/Si Schottky photodetectors. Electron Mater Lett, 2023, 19(2), 121 doi: 10.1007/s13391-022-00384-2[86] Riazimehr S, Kataria S, Bornemann R, et al. High photocurrent in gated graphene-silicon hybrid photodiodes. ACS Photonics, 2017, 4(6), 1506 doi: 10.1021/acsphotonics.7b00285[87] Zhang S, Zhang G L, Zheng L, et al. High-performance near-infrared photodetector by integration of PbS quantum dots with 3D-graphene. IEEE Electron Device Lett, 2023, 44(8), 1240 doi: 10.1109/LED.2023.3288140[88] Zhao Y, Tsai T Y, Wu G, et al. Graphene/SnS2 van der waals photodetector with high photoresponsivity and high photodetectivity for broadband 365-2240 nm detection. ACS Appl Mater Interfaces, 2021, 13(39), 47198 doi: 10.1021/acsami.1c11534[89] Zhang X K, Kang Z, Gao L, et al. Molecule-upgraded van der waals contacts for Schottky-barrier-free electronics. Adv Mater, 2021, 33(45), e2104935 doi: 10.1002/adma.202104935[90] Sun L, Zhu L F, Zhang C L, et al. Mechanical manipulation of silicon-based Schottky diodes via flexoelectricity. Nano Energy, 2021, 83, 105855 doi: 10.1016/j.nanoen.2021.105855[91] Li L, Fan Z Y. Optoelectronic materials and devices. Small Meth, 2024, 8(2), 2301632 doi: 10.1002/smtd.202301632[92] Shen J, Liu X Z, Song X F, et al. High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes. Nanoscale, 2017, 9(18), 6020 doi: 10.1039/C7NR00573C[93] He Z Y, Zhang S, Zheng L, et al. Si-based NIR tunneling heterojunction photodetector with interfacial engineering and 3D-graphene integration. IEEE Electron Device Lett, 2022, 43(11), 1818 doi: 10.1109/LED.2022.3203474[94] Kuznetsov A I, Miroshnichenko A E, Brongersma M L, et al. Optically resonant dielectric nanostructures. Science, 2016, 354(6314), aag2472 doi: 10.1126/science.aag2472[95] Tai S P, Wu Y, Shieh D B, et al. Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles. Adv Mater, 2007, 19(24), 4520 doi: 10.1002/adma.200602213[96] Zhang G L, Zhang S, Zheng L, et al. Localized surface plasmon resonance enables Si-based near-infrared photodetector. IEEE Trans Electron Devices, 2023, 70(10), 5497 doi: 10.1109/TED.2023.3303148[97] Liu Y H, Li F H, Huang H, et al. Optoelectronic and photocatalytic properties of I–III–VI QDs: Bridging between traditional and emerging new QDs. J Semicond, 2020, 41(9), 091701 doi: 10.1088/1674-4926/41/9/091701[98] Marino E, Sciortino A, Berkhout A, et al. Simultaneous photonic and excitonic coupling in spherical quantum dot supercrystals. ACS Nano, 2020, 14(10), 13806 doi: 10.1021/acsnano.0c06188[99] Pang X H, Bian H J, Wang W J, et al. A bio-chemical application of N-GQDs and g-C3N4 QDs sensitized TiO2 nanopillars for the quantitative detection of pcDNA3-HBV. Biosens Bioelectron, 2017, 91, 456 doi: 10.1016/j.bios.2016.12.059[100] Wu H J, Liu Z Y, Wang B K, et al. Integration of PbS quantum dots with 3D-graphene for self-powered broadband photodetectors in image sensors. ACS Photonics, 2024, 11(3), 1342 doi: 10.1021/acsphotonics.3c01803[101] Zhao M H, Xue Z Y, Zhu W, et al. Interface engineering-assisted 3D-graphene/germanium heterojunction for high-performance photodetectors. ACS Appl Mater Interfaces, 2020, 12(13), 15606 doi: 10.1021/acsami.0c02485[102] Sinha D, Lee J U. Ideal graphene/silicon Schottky junction diodes. Nano Lett, 2014, 14(8), 4660 doi: 10.1021/nl501735k[103] Xu Y, Cheng C, Du S C, et al. Contacts between two- and three-dimensional materials: Ohmic, Schottky, and p-n heterojunctions. ACS Nano, 2016, 10(5), 4895 doi: 10.1021/acsnano.6b01842[104] Liu X Z, Zhou Q, Luo S, et al. Infrared photodetector based on the photothermionic effect of graphene-nanowall/silicon heterojunction. ACS Appl Mater Interfaces, 2019, 11(19), 17663 doi: 10.1021/acsami.9b03329[105] Feng X Q, He Z Y, Liu Z D, et al. Intact vertical 3D–0D–2D carbon-based p–n junctions for use in high-performance photodetectors. Adv Opt Mater, 2021, 9(16), 2100387 doi: 10.1002/adom.202100387[106] Zhu W, Xue Z Y, Wang G, et al. Graphene quantum dot-decorated vertically oriented graphene/germanium heterojunctions for near-infrared photodetectors. ACS Appl Nano Mater, 2020, 3(7), 6915 doi: 10.1021/acsanm.0c01258[107] Fang H H, Hu W D. Photogating in low dimensional photodetectors. Adv Sci, 2017, 4(12), 1700323 doi: 10.1002/advs.201700323[108] Long M S, Wang P, Fang H H, et al. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Funct Materials, 2019, 29(19), 1803807 doi: 10.1002/adfm.201803807[109] Sukhovatkin V, Hinds S, Brzozowski L, et al. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science, 2009, 324(5934), 1542 doi: 10.1126/science.1173812[110] Huijser A, Savenije T J, Kotlewski A, et al. Efficient light-harvesting layers of homeotropically aligned porphyrin derivatives. Adv Mater, 2006, 18(17), 2234 doi: 10.1002/adma.200600045[111] Zhang Z, Jia F A, Kong F H, et al. Chloride adsorbates enhance the photocarrier separation and promote the bio-syngas evolution. Small, 2023, 19(21), e2300810 doi: 10.1002/smll.202300810[112] Ghosh C, Dey A, Biswas I, et al. CuO–TiO2 based self-powered broad band photodetector. Nano Energy, 2020, 70, 104518 doi: 10.1016/j.nanoen.2020.104518[113] Ghosh C, Dey A, Biswas I, et al. CuO-TiO2 based self-powered broad band photodetector. Nano Mater Sci, 2024, 6(3), 345 doi: 10.1016/j.nanoms.2023.11.003[114] Niu W Z, Moehl T, Cui W, et al. Extended light harvesting with dual Cu2O-based photocathodes for high efficiency water splitting. Adv Energy Mater, 2018, 8(10), 1702323 doi: 10.1002/aenm.201702323[115] Tang H Y, Anwar T, Jang M S, et al. Light-intensity switching of graphene/WSe2 synaptic devices. Adv Sci, 2024, 11(24), e2309876 doi: 10.1002/advs.202309876[116] Wang W H, Du R X, Sun L T, et al. Ultrasensitive graphene position-sensitive detector induced by synergistic effects of charge injection and interfacial gating. Nanophotonics, 2020, 9(8), 2531 doi: 10.1515/nanoph-2020-0053[117] Liu F Z, Kar S. Quantum carrier reinvestment-induced ultrahigh and broadband photocurrent responses in graphene-silicon junctions. ACS Nano, 2014, 8(10), 10270 doi: 10.1021/nn503484s[118] Ma Z Y, Li G, Zhang X L, et al. High-performance and broadband photodetection of bicrystalline (GaN)1-x(ZnO)x solid solution nanowires via crystal defect engineering. J Mater Sci Technol, 2021, 85, 255 doi: 10.1016/j.jmst.2021.01.020[119] Srisonphan S, Jung Y S, Kim H K. Metal-oxide-semiconductor field-effect transistor with a vacuum channel. Nat Nanotechnol, 2012, 7(8), 504 doi: 10.1038/nnano.2012.107[120] Luo H W, Yu C M, Liu Z T, et al. Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive. Sci Adv, 2016, 2(5), e1600076 doi: 10.1126/sciadv.1600076[121] Sun H T, Mei L, Liang J F, et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science, 2017, 356(6338), 599 doi: 10.1126/science.aam5852[122] Wang H C, Fu Y Q. Graphene-nanowalls/silicon hybrid heterojunction photodetectors. Carbon, 2020, 162, 181 doi: 10.1016/j.carbon.2020.02.023[123] Liu H Y, Sun F, Li X Y, et al. g-C3N4/TiO2/ZnIn2S4 graphene aerogel photocatalysts with double S-scheme heterostructure for improving photocatalytic multifunctional performances. Compos Part B Eng, 2023, 259, 110746 doi: 10.1016/j.compositesb.2023.110746[124] Li M M, Wang Y, Yang C C, et al. In situ grown Co3O4 nanocubes on N-doped graphene as a synergistic hybrid for applications in nickel metal hydride batteries. Int J Hydrog Energy, 2018, 43(39), 18421 doi: 10.1016/j.ijhydene.2018.08.054[125] Guo S H, Zhang B C, Zhang X L, et al. Non-noble-metal plasmonic parabolic membrane with “pearl necklace” structure for enhanced hydrogen production based on light concentration effect. Chem Eng J, 2024, 493, 152708 doi: 10.1016/j.cej.2024.152708[126] Meng J H, Liu X, Zhang X W, et al. Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer. Nano Energy, 2016, 28, 44 doi: 10.1016/j.nanoen.2016.08.028[127] Yang J, Tang L L, Luo W, et al. Interface engineering of a silicon/graphene heterojunction photodetector via a diamond-like carbon interlayer. ACS Appl Mater Interfaces, 2021, 13(3), 4692 doi: 10.1021/acsami.0c18850[128] Yang J W, Liu Y D, Ci H N, et al. High-performance 3D vertically oriented graphene photodetector using a floating indium tin oxide channel. Sensors, 2022, 22(3), 959 doi: 10.3390/s22030959[129] Qiao H, Li Z J, Huang Z Y, et al. Self-powered photodetectors based on 0D/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole accepters. Appl Mater Today, 2020, 20, 100765 doi: 10.1016/j.apmt.2020.100765[130] Lan G L, Nong J P, Jin W F, et al. Enhanced UV photoresponse employing 3D graphene nanowalls/SnO2 nanocomposite film. Surf Coat Technol, 2019, 359, 90 doi: 10.1016/j.surfcoat.2018.12.052[131] Gao Y, Zhao C, Pu K, et al. Low-voltage-modulated perovskite/organic dual-band photodetectors for visible and near-infrared imaging. Sci Bull, 2022, 67(19), 1982 doi: 10.1016/j.scib.2022.09.007[132] Ahmad A A, Al-Bataineh Q M, Migdadi A B. Nanocomposite superstructure of zinc oxide mesocrystal/reduced graphene oxide with effective photoconductivity. J Semicond, 2024, 45(11), 112701 doi: 10.1088/1674-4926/24060019[133] Zhou D H, Yu L Y, Zhu P, et al. Lateral structured phototransistor based on mesoscopic graphene/perovskite heterojunctions. Nanomaterials, 2021, 11(3), 641 doi: 10.3390/nano11030641[134] Feng X Q, He Z Y, Zhu W, et al. Perovskite quantum dots integrated with vertically aligned graphene toward ambipolar multifunctional photodetectors. J Mater Chem C, 2021, 9(2), 609 doi: 10.1039/D0TC04932H[135] Yang H, Tan C W, Deng C Y, et al. Bolometric effect in Bi2O2Se photodetectors. Small, 2019, 15(43), e1904482 doi: 10.1002/smll.201904482[136] Guo X H, Lu X W, Jiang P, et al. Touchless thermosensation enabled by flexible infrared photothermoelectric detector for temperature prewarning function of electronic skin. Adv Mater, 2024, 36(23), e2313911 doi: 10.1002/adma.202313911[137] Xiao Y, Zhao L D. Seeking new, highly effective thermoelectrics. Science, 2020, 367(6483), 1196 doi: 10.1126/science.aaz9426[138] Zhao L D, Lo S H, Zhang Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508(7496), 373 doi: 10.1038/nature13184[139] Wei M, Li H B, Nisar M, et al. The synergistic effect of hole co-doping on carrier transports and phonon tuning in Sb2Te3 flexible thermoelectric thin film. Chem Eng J, 2024, 495, 153185 doi: 10.1016/j.cej.2024.153185[140] Li Y Y, Liu G H, Cao T F, et al. Enhanced thermoelectric properties of Cu2SnSe3 by (Ag, In)-co-doping. Adv Funct Materials, 2016, 26(33), 6025 doi: 10.1002/adfm.201601486[141] Wang L M, Bi H, Yao Q, et al. Three-dimensional tubular graphene/polyaniline composites as high-performance elastic thermoelectrics. Compos Sci Technol, 2017, 150, 135 doi: 10.1016/j.compscitech.2017.07.001[142] Yao Q, Chen L D, Zhang W Q, et al. Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano, 2010, 4(4), 2445 doi: 10.1021/nn1002562[143] Peng H S. Aligned carbon nanotube/polymer composite films with robust flexibility, high transparency, and excellent conductivity. J Am Chem Soc, 2008, 130(1), 42 doi: 10.1021/ja078267m[144] Kondapalli V K R, Akinboye O I, Zhang Y, et al. Three-dimensional graphene sheet-carbon veil thermoelectric composite with microinterfaces for energy applications. ACS Appl Mater Interfaces, 2024, 16(10), 13150 doi: 10.1021/acsami.3c19605[145] Chen C H, Yi X J, Zhao X R, et al. Characterizations of VO2- based uncooled microbolometer linear array. Sens Actuat A Phys, 2001, 90(3), 212 doi: 10.1016/S0924-4247(01)00495-2[146] Wang B, Lai J J, Li H, et al. Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer. Infrared Phys Technol, 2013, 57, 8 doi: 10.1016/j.infrared.2012.10.006[147] Dai J, Wang X Z, He S W, et al. Low temperature fabrication of VO x thin films for uncooled IR detectors by direct current reactive magnetron sputtering method. Infrared Phys Technol, 2008, 51(4), 287 doi: 10.1016/j.infrared.2007.12.002[148] Wei Z Y, Yang F, Bi K D, et al. Thermal transport properties of all-sp2 three-dimensional graphene: Anisotropy, size and pressure effects. Carbon, 2017, 113, 212 doi: 10.1016/j.carbon.2016.11.055[149] Lv P, Tan X W, Yu K H, et al. Super-elastic graphene/carbon nanotube aerogel: A novel thermal interface material with highly thermal transport properties. Carbon, 2016, 99, 222 doi: 10.1016/j.carbon.2015.12.026[150] Iglesias J M, Martín M J, Pascual E, et al. Hot carrier and hot phonon coupling during ultrafast relaxation of photoexcited electrons in graphene. Appl Phy Lett, 2016, 108(4), 043105 doi: 10.1063/1.4940902[151] Tran M D, Lee S G, Jeon S, et al. Decelerated hot carrier cooling in graphene via nondissipative carrier injection from MoS2. ACS Nano, 2020, 14(10), 13905 doi: 10.1021/acsnano.0c06311[152] Xu C, Liu G W, Li M, et al. Optical switching and nanothermochromic studies of VO2(M) nanoparticles prepared by mild thermolysis method. Mater Des, 2020, 187, 108396 doi: 10.1016/j.matdes.2019.108396[153] Wu B M, Zhang Z Y, Chen B X, et al. One-step rolling fabrication of VO2 tubular bolometers with polarization-sensitive and omnidirectional detection. Sci Adv, 2023, 9(42), eadi7805 doi: 10.1126/sciadv.adi7805[154] Lu Y, Zhang H, Wan D Y. CVD preparation of vertical graphene nanowalls/VO2(B) composite films with superior thermal sensitivity in uncooled infrared detector. J Materiomics, 2020, 6(2), 280 doi: 10.1016/j.jmat.2020.03.002[155] Zhang H, Zhao K Y, Cui S Y, et al. Anomalous temperature coefficient of resistance in graphene nanowalls/polymer films and applications in infrared photodetectors. Nanophotonics, 7(5), 883 -
Proportional views