Citation: |
Zhengyuan Li, Jiaqi Wei, Yiyuan Liu, Huihui Li, Yang Li, Zhitai Jia, Xutang Tao, Wenxiang Mu. Growth and optical properties of large-sized Co2+: ZnGa2O4 single crystal[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25010017
****
Z Y Li, J Q Wei, Y Y Liu, H H Li, Y Li, Z T Jia, X T Tao, and W X Mu, Growth and optical properties of large-sized Co2+: ZnGa2O4 single crystal[J]. J. Semicond., 2025, 46(7), 072501 doi: 10.1088/1674-4926/25010017
|
Growth and optical properties of large-sized Co2+: ZnGa2O4 single crystal
DOI: 10.1088/1674-4926/25010017
CSTR: 32376.14.1674-4926.25010017
More Information-
Abstract
The transition of cobalt ions located at tetrahedral sites will produce strong absorption in the visible and near-infrared regions, and is expected to work in a passively Q-switched solid-state laser at the eye-safe wavelength of 1.5 µm. In this study, Co2+ ions were introduced into the wide bandgap semiconductor material ZnGa2O4, and large-sized and high-quality Co2+-doped ZnGa2O4 crystals with a volume of about 20 cm3 were grown using the vertical gradient freeze(VGF) method. Crystal structure and optical properties were analyzed using X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and absorption spectroscopy. XRD results show that the Co2+-doped ZnGa2O4 crystal has a pure spinel phase without impurity phases and the rocking curve full width at half maximum (FWHM) is only 58 arcsec. The concentration of Co2+ in Co2+-doped ZnGa2O4 crystals was determined to be 0.2 at.% by the energy dispersive X-ray spectroscopy. The optical band gap of Co2+-doped ZnGa2O4 crystals is 4.44 eV. The optical absorption spectrum for Co2+-doped ZnGa2O4 reveals a prominent visible absorption band within 550−670 nm and a wide absorption band spanning from 1100 to 1700 nm. This suggests that the Co2+ ions have substituted the Zn2+ ions, which are typically tetrahedrally coordinated, within the lattice structure of ZnGa2O4. The visible region's absorption peak and the near-infrared broad absorption band are ascribed to the 4A2(4F) → 4T1(4P) and 4A2(4F) → 4T1(4F) transitions, respectively. The optimal ground state absorption cross section was determined to be 3.07 × 10−19 cm2 in ZnGa2O4, a value that is comparatively large within the context of similar materials. This finding suggests that ZnGa2O4 is a promising candidate for use in near-infrared passive Q-switched solid-state lasers. -
References
[1] Mlynczak J, Belghachem N, Kopczynski K, et al. Performance analysis of thermally bonded Er3+, Yb3+: Glass/Co2+: MgAl2O4 microchip lasers. Opt Quantum Electron, 2016, 48(4), 247 doi: 10.1007/s11082-016-0508-z[2] Camargo M B, Stultz R D, Birnbaum M, et al. Co(2+): YSGG saturable absorber Q switch for infrared erbium lasers. Opt Lett, 1995, 20(3), 339 doi: 10.1364/OL.20.000339[3] Denisov I A, Demchuk M I, Kuleshov N V, et al. Co2+: LiGa5O8 saturable absorber passive Q switch for 1.34 μm Nd3+: YAlO3 and 1.54 μm Er3+: Glass lasers. Appl Phys Lett, 2000, 77(16), 2455 doi: 10.1063/1.1319179[4] Kuleshov N V, Mikhailov V P, Scherbitsky V G, et al. Absorption and luminescence of tetrahedral Co2+ ion in MgAl2O4. J Lumin, 1993, 55(5/6), 265[5] Abritta T, Blak F H. Luminescence study of ZnGa2O4: Co24. J Lumin, 1991, 48/49, 558 doi: 10.1016/0022-2313(91)90192-X[6] Yumashev K V. Saturable absorber Co2+: MgAl2O4 crystal for Q switching of 1.34-µm Nd3+: YAlO3 and 1.54-µm Er3+: Glass lasers. Appl Opt, 1999, 38(30), 6343 doi: 10.1364/AO.38.006343[7] Donegan J F, Anderson F G, Bergin F J, et al. Optical and magnetic-circular-dichroism–optically-detected-magnetic-resonance study of the Co2+ ion in LiGa5O8. Phys Rev B, 1992, 45(2), 563 doi: 10.1103/PhysRevB.45.563[8] Sosman L P, Dias Tavares A Jr, Abritta T. Near infrared spectroscopy of divalent cobalt in polycrystalline magnesium and zinc gallate. J Phys D: Appl Phys, 2000, 33(2), L19 doi: 10.1088/0022-3727/33/2/103[9] Mary Jacintha A, Manikandan A, Chinnaraj K, et al. Comparative studies of spinel MnFe2O4 nanostructures: Structural, morphological, optical, magnetic and catalytic properties. J Nanosci Nanotechnol, 2015, 15(12), 9732 doi: 10.1166/jnn.2015.10343[10] Suguna S, Shankar S, Jaganathan S K, et al. Novel synthesis and characterization studies of spinel Ni xCo1– xAl2O4 (x = 0.0 to 1.0) nano-catalysts for the catalytic oxidation of benzyl alcohol. J Nanosci Nanotechnol, 2018, 18(2), 1019 doi: 10.1166/jnn.2018.13960[11] Zeb M, Tahir M, Muhammad F, et al. Pyrrol-anthracene: Synthesis, characterization and its application as active material in humidity, temperature and light sensors. Coatings, 2022, 12(6), 848 doi: 10.3390/coatings12060848[12] Ullah F, Qureshi M T, Abbas S K, et al. Dilute magnetic ions mediated magneto-dielectric, optical and ferroelectric response of MgAl2O4 spinels. J Phys: Condens Matter, 2020, 32(36), 365701 doi: 10.1088/1361-648X/ab8aa0[13] Itoh S, Toki H, Sato Y, et al. The ZnGa2O4 phosphor for low-voltage blue cathodoluminescence. J Electrochem Soc, 1991, 138(5), 1509 doi: 10.1149/1.2085816[14] Shea L E, Datta R K, Brown J J. Low voltage cathodoluminescence of Mn2+-activated ZnGa2O4. J Electrochem Soc, 1994, 141(8), 2198 doi: 10.1149/1.2055086[15] Minami T, Kuroi Y, Miyata T, et al. ZnGa2O4 as host material for multicolor-emitting phosphor layer of electroluminescent devices. J Lumin, 1997, 72, 997[16] Kim J S, Lee S G, Park H L, et al. Optical and electrical properties of ZnGa2O4/Mn2+ powder electroluminescent device. Mater Lett, 2004, 58(7/8), 1354[17] Minami T, Maeno T, Kuroi Y, et al. High-luminance green-emitting thin-film electroluminescent devices using ZnGa2O4: Mn phosphor. Jpn J Appl Phys, 1995, 34(6A), L684 doi: 10.1143/JJAP.34.L684[18] Jović N G, Masadeh A S, Kremenović A S, et al. Effects of thermal annealing on structural and magnetic properties of lithium ferrite nanoparticles. J Phys Chem C, 2009, 113(48), 20559 doi: 10.1021/jp907559y[19] Sreeja V, Smitha T S, Nand D, et al. Size dependent coordination behavior and cation distribution in MgAl2O4 nanoparticles from 27Al solid state NMR studies. J Phys Chem C, 2008, 112(38), 14737 doi: 10.1021/jp800412k[20] Mittal V K, Chandramohan P, Bera S, et al. Cation distribution in Ni xMg1− xFe2O4 studied by XPS and mössbauer spectroscopy. Solid State Commun, 2006, 137(1/2), 6[21] Hsieh I J, Chu K T, Yu C F, et al. Cathodoluminescent characteristics of ZnGa2O4 phosphor grown by radio frequency magnetron sputtering. 1994, 76(6), 3735[22] Omata T, Ueda N, Ueda K, et al. New ultraviolet-transport electroconductive oxide, ZnGa2O4 spinel. 1994, 64(9), 1077[23] Shea L E, Datta R K, Brown J J. Photoluminescence of Mn2+-activated ZnGa2O4. J Electrochem Soc, 1994, 141(7), 1950 doi: 10.1149/1.2055033[24] Jeong I K, Park H L, Mho S I. Two self-activated optical centers of blue emission in zinc gallate. Solid State Commun, 1998, 105(3), 179 doi: 10.1016/S0038-1098(97)10101-6[25] Yu C F, Lin P. Manganese-activated luminescence in ZnGa2O4. 1996, 79(9), 7191[26] Kim J S, Kim J S, Kim T W, et al. Energy transfer among three luminescent centers in full-color emitting ZnGa2O4: Mn2+, Cr3+ phosphors. Solid State Commun, 2004, 131(8), 493 doi: 10.1016/j.ssc.2004.06.023[27] Yu M, Lin J, Zhou Y H, et al. Citrate–gel synthesis and luminescent properties of ZnGa2O4 doped with Mn2+ and Eu3+. Mater Lett, 2002, 56(6), 1007 doi: 10.1016/S0167-577X(02)00664-X[28] Xu Z H, Li Y X, Liu Z F, et al. UV and X-ray excited luminescence of Tb3+-doped ZnGa2O4 phosphors. J Alloys Compd, 2005, 391(1/2), 202[29] Kim J S, Kim J S, Park H L. Optical and structural properties of nanosized ZnGa2O4: Cr3+ phosphor. Solid State Commun, 2004, 131(12), 735 doi: 10.1016/j.ssc.2004.07.026[30] Kim J S, Kim J S, Kim T W, et al. Correlation between the crystalline environment and optical property of Mn2+ ions in ZnGa2O4: Mn2+ phosphor. Appl Phys Lett, 2005, 86(9), 091912 doi: 10.1063/1.1869550[31] Ohtake T, Sonoyama N, Sakata T. Electrochemical luminescence of ZnGa2O4 semiconductor electrodes activated with Cr and Co. Chem Phys Lett, 2000, 318(6), 517 doi: 10.1016/S0009-2614(00)00082-8[32] Zhuang Y X, Ueda J, Tanabe S. Enhancement of red persistent luminescence in Cr3+-doped ZnGa2O4 phosphors by Bi2O3 codoping. Appl Phys Express, 2013, 6, 052602 doi: 10.7567/APEX.6.052602[33] Rack P D, Peterson J J, Potter M D, et al. Eu+3 and Cr+3 doping for red cathodoluminescence in ZnGa2O4. J Mater Res, 2001, 16(5), 1429 doi: 10.1557/JMR.2001.0199[34] Balda R, Fernández J, De Pablos A, et al. Cr3+→Nd3+ energy transfer in fluorophosphate glass investigated by time-resolved laser spectroscopy. Physical Review B, 1993, 48, 294[35] Wu B T, Zhou S F, Ruan J, et al. Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ Co-doped ZnAl2O4 nanocrystals. Opt Express, 2008, 16(4), 2508 doi: 10.1364/OE.16.002508[36] Hsu K H, Chen K S. Photoluminescence of ZnGa2O4 phosphor prepared by a microencapsulation method. Ceram Int, 2000, 26(5), 469 doi: 10.1016/S0272-8842(99)00081-4[37] Jung H K, Park D S, Park Y C. Preparation and characterization of ZnGa2O4: Mn phosphors by multistage precipitation method. Mater Res Bull, 1999, 34(1), 43 doi: 10.1016/S0025-5408(98)00216-5[38] Hirano M, Imai M, Inagaki M. Preparation of ZnGa2O4 spinel fine particles by the hydrothermal method. J Am Ceram Soc, 2000, 83(4), 977 doi: 10.1111/j.1151-2916.2000.tb01310.x[39] Li Y D, Duan X F, Liao H W, et al. Self-regulation synthesis of nanocrystalline ZnGa2O4 by hydrothermal reaction. Chem Mater, 1998, 10(1), 17 doi: 10.1021/cm970557m[40] Persistent luminescence of transition metal . (Co, Ni)-doped ZnGa2O4 phosphors for applications in the near-infrared range. Oxide-based Materials and Devices IX, 2018, 196[41] Duan X L, Liu J, Wu Y C, et al. Structure and luminescent properties of Co2+/Cr3+ Co-doped ZnGa2O4 nanoparticles. J Lumin, 2014, 153, 361 doi: 10.1016/j.jlumin.2014.03.027[42] Li X Y, Liu Q, Hu Z W, et al. Influence of ammonium hydrogen carbonate to metal ions molar ratio on co-precipitated nanopowders for TGG transparent ceramics. Journal of Inorganic Materials, 2019, 34, 791 doi: 10.15541/jim20180574[43] Dai Y H, Li J, Zhang Y, et al. Preparation of Er, Yb: (LaLu)2O3 ceramic and its upconversion luminescent properties. Chin J Lumin, 2018, 39(4), 488 doi: 10.3788/fgxb20183904.0488[44] Wei J B, Toci G, Pirri A, et al. Fabrication and property of Yb: CaF2 laser ceramics from co-precipitated nanopowders. Journal of Inorganic Materials, 2019, 34, 1341 doi: 10.15541/jim20190121[45] White W B, DeAngelis B A. Interpretation of the vibrational spectra of spinels. Spectrochim Acta Part A Mol Spectrosc, 1967, 23(4), 985 doi: 10.1016/0584-8539(67)80023-0[46] Bukhari S H, Ahmad J. Infrared active phonons and optical band gap in multiferroic GdMnO3 studied by infrared and UV-visible spectroscopy. Acta Phys Pol A, 2016, 129(1), 43 doi: 10.12693/APhysPolA.129.43[47] Kuleshov N V, Mikhailov V P, Scherbitsky V G. Co-doped spinels: promising materials for solid state lasers . Longer Wavelength Lasers and Applications, 1994, 2138, 175[48] Wang B, Wang H, Tu B T, et al. Optical transmission, dispersion, and transition behavior of ZnGa2O4 transparent ceramic. J Am Ceram Soc, 2023, 106(2), 1230 doi: 10.1111/jace.18857[49] Li N N, Duan X L, Yu F P, et al. Effects of preparation method and temperature on the cation distribution of ZnGa2O4 spinel studied by X-ray photoelectron spectroscopy. Vacuum, 2017, 142, 1 doi: 10.1016/j.vacuum.2017.04.035[50] Chi Z, Tarntair F G, Frégnaux M, et al. Bipolar self-doping in ultra-wide bandgap spinel ZnGa2O4. Mater Today Phys, 2021, 20, 100466 doi: 10.1016/j.mtphys.2021.100466[51] Kamal C S, Mishra R K, Rao K R, et al. Influence of Ge4+ doping on photo- and electroluminescence properties of ZnGa2O4. J Alloys Compd, 2021, 852, 156967 doi: 10.1016/j.jallcom.2020.156967[52] Drasovean R, Condurache-Bota S. Structural characterization and optical properties of Co3O4 and CoO films. J Optoelectron Adv Mater, 2009, 11, 2141[53] Ferguson J, Wood D L, Van Uitert L G. Crystal-field spectra of d3, 7 ions. V. tetrahedral Co2+ in ZnAl2O4 spinel. J Chem Phys, 1969, 51(7), 2904[54] Donegan J F, Bergin F J, Imbusch G F, et al. Luminescence from LiGa5O8: Co. J Lumin, 1984, 31(1), 278[55] Duan X L, Yuan D R, Wang L H, et al. Synthesis and optical properties of Co2+-doped ZnGa2O4 nanocrystals. J Cryst Growth, 2006, 296(2), 234 doi: 10.1016/j.jcrysgro.2006.07.035[56] Luo W, Ma P, Xie T F, et al. Fabrication and spectroscopic properties of Co: MgAl2O4 transparent ceramics by the HIP post-treatment. Opt Mater, 2017, 69, 152 doi: 10.1016/j.optmat.2017.03.036[57] Pappalardo R, Wood D L, Linares R C. Optical absorption spectra of Ni-doped oxide systems. I J ChemPhys, 1961, 35(4), 1460[58] Wood D L, Remeika J P. Optical absorption of tetrahedral Co3+ and Co2+ in garnets. J Chem Phys, 1967, 46(9), 3595 doi: 10.1063/1.1841263[59] Izumi K, Miyazaki S, Yoshida S, et al. Optical properties of 3d transition-metal-doped MgAl2O4 spinels. Phys Rev B, 2006, 76, 075111[60] Goldstein A, Loiko P, Burshtein Z, et al. Development of saturable absorbers for laser passive Q-switching near 1.5 μm based on transparent ceramic Co2+: MgAl2O4. J Am Ceram Soc, 2016, 99(4), 1324 doi: 10.1111/jace.14102[61] Su S, Liu Q, Hu Z W, et al. A simple way to prepare Co: MgAl2O4 transparent ceramics for saturable absorber. J Alloys Compd, 2019, 797, 1288 doi: 10.1016/j.jallcom.2019.04.322[62] Luo W, Pan Y B, Li C Y, et al. Fabrication and spectral properties of hot-pressed Co: MgAl2O4 transparent ceramics for saturable absorber. J Alloys Compd, 2017, 724, 45 doi: 10.1016/j.jallcom.2017.04.292 -
Proportional views