J. Semicond. >  In Press

RESEARCH HIGHLIGHTS

Multi-chip multi-phase DC−DC converters for AI power: a ring, a chain, or a net, independent or master-slave?

Yan Lu1, , Zhiguo Tong2, Jiacheng Yang2, Zhewen Yu1, 2, Mo Huang2 and Xiangyu Mao3

+ Author Affiliations

 Corresponding author: Yan Lu, yanlu@tsinghua.edu.cn

DOI: 10.1088/1674-4926/25040033CSTR: 32376.14.1674-4926.25040033

PDF

Turn off MathJax



[1]
Talpes E, Williams D, Das Sarma D. DOJO: The microarchitecture of tesla’s exa-scale computer. 2022 IEEE Hot Chips 34 Symposium (HCS), 2022, 1 doi: 10.1109/HCS55958.2022.9895534
[2]
Wang C, Lu Y, Sun N, et al. A 3-phase resonant switched-capacitor converter for data center 48-V rack power distribution. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(6), 2714 doi: 10.1109/TCSI.2021.3068564
[3]
Lu Y, Jiang J M, Ki W H. A multiphase switched-capacitor DC–DC converter ring with fast transient response and small ripple. IEEE J Solid State Circuits, 2017, 52(2), 579 doi: 10.1109/JSSC.2016.2617315
[4]
Lu Y, Jiang J M, Ki W H. Design considerations of distributed and centralized switched-capacitor converters for power supply on-chip. IEEE J Emerg Sel Top Power Electron, 2018, 6(2), 515 doi: 10.1109/JESTPE.2017.2747094
[5]
Jiang J M, Liu X, Ki W H, et al. A multiphase switched-capacitor converter for fully integrated AMLED microdisplay system. IEEE Trans Power Electron, 2020, 35(6), 6001 doi: 10.1109/TPEL.2019.2951799
[6]
Ki W H, Cheng L. Very-high-frequency and fast-transient DC−DC switching converters. Selected Topics in Power, RF, and Mixed-Signal ICs. River Publishers, 2022, 9
[7]
Wang C, Lu Y, Huang M, et al. A two-phase three-level buck converter with cross-connected flying capacitors for inductor current balancing. IEEE Trans Power Electron, 2021, 36(12), 13855 doi: 10.1109/TPEL.2021.3084218
[8]
Yang J C, Hu T X, Lu Y, et al. Phase-scalable CF-cross-connected-based hybrid DC–DC converter with auto VCF balancing and inactive CF charging. IEEE J Solid State Circuits, 2025, PP(99), 1 doi: 10.1109/JSSC.2025.3557060
[9]
Cho J H, Bae H H, Lim G W, et al. A fully-integrated 0.9W/mm2 79.1%-efficiency 200MHz multi-phase buck converter with flying-capacitor-based inter-inductor current balancing technique. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), 2022, 196 doi: 10.1109/VLSITechnologyandCir46769.2022.9830282
[10]
Tong Z G, Yu Z W, Huang J W, et al. HOOP: A scalable hybrid DC−DC converter ring for high-performance computing. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 1 doi: 10.1109/ISSCC49661.2025.10904695
[11]
Mao X Y, Lu Y, Martins R P. A fully synthesizable all-digital dual-loop distributed low-dropout regulator. IEEE J Solid State Circuits, 2024, 59(6), 1871 doi: 10.1109/JSSC.2023.3340008
[12]
Bang S, Lim W, Augustine C, et al. A fully synthesizable distributed and scalable all-digital LDO in 10nm CMOS. 2020 IEEE International Solid- State Circuits Conference-(ISSCC), 2020, 380 doi: 10.1109/ISSCC19947.2020.9063040
[13]
Lu Y, Cai G G, Huang J W. Favorable basic cells for hybrid DC–DC converters. J Semicond, 2023, 44(4), 040301 doi: 10.1088/1674-4926/44/4/040301
[14]
Yang J C, Martins R P, Huang M. A segmented-interlacing multi-phase hybrid converter with inherently auto-balanced ILs and boosted IL slew rate during load transients. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 378 doi: 10.1109/ISSCC49661.2025.10904561
[15]
Huang J W, Mao X Y, Tong Z G, et al. A 20MHz & 1MHz dual-loop non-uniform-multi-inductor hybrid DC−DC converter with specified inductor current allocation and fast transient response. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 1 doi: 10.1109/ISSCC49661.2025.10904544
Fig. 1.  (Color online) A lateral-vertical power delivery system from 48 V to the point-of-load.

Fig. 2.  (Color online) Multi-chip multi-phase DC−DC conversion with (a) centralized controller and power stages, (b) a distributed converter ring, or (c) a distributed converter array.

[1]
Talpes E, Williams D, Das Sarma D. DOJO: The microarchitecture of tesla’s exa-scale computer. 2022 IEEE Hot Chips 34 Symposium (HCS), 2022, 1 doi: 10.1109/HCS55958.2022.9895534
[2]
Wang C, Lu Y, Sun N, et al. A 3-phase resonant switched-capacitor converter for data center 48-V rack power distribution. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(6), 2714 doi: 10.1109/TCSI.2021.3068564
[3]
Lu Y, Jiang J M, Ki W H. A multiphase switched-capacitor DC–DC converter ring with fast transient response and small ripple. IEEE J Solid State Circuits, 2017, 52(2), 579 doi: 10.1109/JSSC.2016.2617315
[4]
Lu Y, Jiang J M, Ki W H. Design considerations of distributed and centralized switched-capacitor converters for power supply on-chip. IEEE J Emerg Sel Top Power Electron, 2018, 6(2), 515 doi: 10.1109/JESTPE.2017.2747094
[5]
Jiang J M, Liu X, Ki W H, et al. A multiphase switched-capacitor converter for fully integrated AMLED microdisplay system. IEEE Trans Power Electron, 2020, 35(6), 6001 doi: 10.1109/TPEL.2019.2951799
[6]
Ki W H, Cheng L. Very-high-frequency and fast-transient DC−DC switching converters. Selected Topics in Power, RF, and Mixed-Signal ICs. River Publishers, 2022, 9
[7]
Wang C, Lu Y, Huang M, et al. A two-phase three-level buck converter with cross-connected flying capacitors for inductor current balancing. IEEE Trans Power Electron, 2021, 36(12), 13855 doi: 10.1109/TPEL.2021.3084218
[8]
Yang J C, Hu T X, Lu Y, et al. Phase-scalable CF-cross-connected-based hybrid DC–DC converter with auto VCF balancing and inactive CF charging. IEEE J Solid State Circuits, 2025, PP(99), 1 doi: 10.1109/JSSC.2025.3557060
[9]
Cho J H, Bae H H, Lim G W, et al. A fully-integrated 0.9W/mm2 79.1%-efficiency 200MHz multi-phase buck converter with flying-capacitor-based inter-inductor current balancing technique. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), 2022, 196 doi: 10.1109/VLSITechnologyandCir46769.2022.9830282
[10]
Tong Z G, Yu Z W, Huang J W, et al. HOOP: A scalable hybrid DC−DC converter ring for high-performance computing. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 1 doi: 10.1109/ISSCC49661.2025.10904695
[11]
Mao X Y, Lu Y, Martins R P. A fully synthesizable all-digital dual-loop distributed low-dropout regulator. IEEE J Solid State Circuits, 2024, 59(6), 1871 doi: 10.1109/JSSC.2023.3340008
[12]
Bang S, Lim W, Augustine C, et al. A fully synthesizable distributed and scalable all-digital LDO in 10nm CMOS. 2020 IEEE International Solid- State Circuits Conference-(ISSCC), 2020, 380 doi: 10.1109/ISSCC19947.2020.9063040
[13]
Lu Y, Cai G G, Huang J W. Favorable basic cells for hybrid DC–DC converters. J Semicond, 2023, 44(4), 040301 doi: 10.1088/1674-4926/44/4/040301
[14]
Yang J C, Martins R P, Huang M. A segmented-interlacing multi-phase hybrid converter with inherently auto-balanced ILs and boosted IL slew rate during load transients. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 378 doi: 10.1109/ISSCC49661.2025.10904561
[15]
Huang J W, Mao X Y, Tong Z G, et al. A 20MHz & 1MHz dual-loop non-uniform-multi-inductor hybrid DC−DC converter with specified inductor current allocation and fast transient response. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 1 doi: 10.1109/ISSCC49661.2025.10904544
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 87 Times PDF downloads: 22 Times Cited by: 0 Times

    History

    Received: 27 April 2025 Revised: Online: Accepted Manuscript: 15 May 2025Uncorrected proof: 19 May 2025

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yan Lu, Zhiguo Tong, Jiacheng Yang, Zhewen Yu, Mo Huang, Xiangyu Mao. Multi-chip multi-phase DC−DC converters for AI power: a ring, a chain, or a net, independent or master-slave?[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25040033 ****Y Lu, Z G Tong, J C Yang, Z W Yu, M Huang, and X Y Mao, Multi-chip multi-phase DC−DC converters for AI power: a ring, a chain, or a net, independent or master-slave?[J]. J. Semicond., 2025, 46(7), 070201 doi: 10.1088/1674-4926/25040033
      Citation:
      Yan Lu, Zhiguo Tong, Jiacheng Yang, Zhewen Yu, Mo Huang, Xiangyu Mao. Multi-chip multi-phase DC−DC converters for AI power: a ring, a chain, or a net, independent or master-slave?[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25040033 ****
      Y Lu, Z G Tong, J C Yang, Z W Yu, M Huang, and X Y Mao, Multi-chip multi-phase DC−DC converters for AI power: a ring, a chain, or a net, independent or master-slave?[J]. J. Semicond., 2025, 46(7), 070201 doi: 10.1088/1674-4926/25040033

      Multi-chip multi-phase DC−DC converters for AI power: a ring, a chain, or a net, independent or master-slave?

      DOI: 10.1088/1674-4926/25040033
      CSTR: 32376.14.1674-4926.25040033
      More Information
      • Yan Lu received the Ph.D. degree in electronic and computer engineering from the Hong Kong University of Science and Technology (HKUST), Hong Kong, China, in 2013. From 2014 to 2024, he was with the State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau, China. In 2024, He joined the Department of Electronic Engineering, Tsinghua University, Beijing, China, as a Full Professor with the endowed Xing-Hua Chair Professorship. His research interests include high-density power converters, integrated voltage regulators, wireless power transfer and energy-harvesting circuits and systems
      • Corresponding author: yanlu@tsinghua.edu.cn
      • Received Date: 2025-04-27
        Available Online: 2025-05-15

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return