Article Navigation >
Journal of Semiconductors
>
2025
> Accepted Manuscript
Citation: |
Jun Yin, Haoran Li, Xiaoqi Lin, Rui P. Martins, Pui-In Mak. Progress and Trends of Low-Jitter Fractional-N PLL[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25040035
****
J Yin, H R Li, X Q Lin, R P Martins, and P I Mak, Progress and Trends of Low-Jitter Fractional-N PLL[J]. J. Semicond., 2025, accepted doi: 10.1088/1674-4926/25040035
|
Progress and Trends of Low-Jitter Fractional-N PLL
DOI: 10.1088/1674-4926/25040035
CSTR: 32376.14.1674-4926.25040035
More Information-
References
[1] Wu W H. Low-jitter frequency generation techniques for 5G communication: A tutorial. IEEE Solid State Circuits Mag, 2021, 13(4), 44 doi: 10.1109/MSSC.2021.3111430[2] Lin T H, Ti C L, Liu Y H. Dynamic current-matching charge pump and gated-offset linearization technique for delta-sigma fractional-N PLLs. IEEE Trans Circuits Syst I Regul Pap, 2009, 56(5), 877 doi: 10.1109/TCSI.2009.2016180[3] Hsueh Y L, Cho L C, Shen C H, et al. A 0.29mm2 frequency synthesizer in 40nm CMOS with 0.19psrms jitter and <–100dBc reference spur for 802.11ac. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, 472[4] Kennedy M P, Mazzaro V, Tulisi S, et al. A 45.5fs-integrated-random-jitter and-75dBc-integer-boundary-spur BiCMOS fractional-N PLL with suppression of fractional, horn, and wandering spurs. 2024 IEEE International Solid-State Circuits Conference (ISSCC), 2024, 194[5] Hung C C, Shen C H, Lin C L, et al. A fractional-N PLL with 34fsrms jitter and −255.5dB FoM based on a multipath feedback technique. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 328[6] Lim C C, Ramiah H, Yin J, et al. An inverse-class-F CMOS oscillator with intrinsic-high-Q first harmonic and second harmonic resonances. IEEE J Solid State Circuits, 2018, 53(12), 3528 doi: 10.1109/JSSC.2018.2875099[7] Xu T L, Zhong S K, Yin J, et al. A 6-to-7.5-GHz 54-fsrms jitter type-II reference-sampling PLL featuring a gain-boosting phase detector for in-band phase-noise reduction. IEEE Trans Circuits Syst I Regul Pap, 2022, 69(12), 4774 doi: 10.1109/TCSI.2022.3201939[8] Gao X, Klumperink E A M, Bohsali M, et al. A low noise sub-sampling PLL in which divider noise is eliminated and PD/CP noise is not multiplied by N². IEEE J Solid State Circuits, 2009, 44(12), 3253 doi: 10.1109/JSSC.2009.2032723[9] Gao X, Burg O, Wang H S, et al. A 2.7-to-4.3GHz, 0.16psrms-jitter, −246.8dB-FOM, digital fractional-N sampling PLL in 28nm CMOS. 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016, 174[10] Wu W H, Yao C W, Godbole K, et al. A 28-nm 75-fsrms analog fractional-N sampling PLL with a highly linear DTC incorporating background DTC gain calibration and reference clock duty cycle correction. IEEE J Solid State Circuits, 2019, 54(5), 1254 doi: 10.1109/JSSC.2019.2899726[11] Gao X. Sampling-based PLLs: a brief overview and tutorial. IEEE Solid-State Circuits Mag, 2025, 17(1), 46 doi: 10.1109/MSSC.2024.3501215[12] Kim J, Jo Y, Park H, et al. A 12.8–15.0-GHz low-jitter fractional-N subsampling PLL using a voltage-domain quantization-error cancellation. IEEE J Solid-State Circuits, 2024, 59(2), 424 doi: 10.1109/JSSC.2023.3297618[13] Tasca D, Zanuso M, Marzin G, et al. A 2.9–4.0-GHz fractional-N digital PLL with Bang-Bang phase detector and 560- fsrms integrated jitter at 4.5-mW power. IEEE J Solid-State Circuits, 2011, 46(12), 2745 doi: 10.1109/JSSC.2011.2162917[14] Levantino S, Marzin G, Samori C. An adaptive pre-distortion technique to mitigate the DTC nonlinearity in digital PLLs. IEEE J Solid-State Circuits, 2014, 49(8), 1762 doi: 10.1109/JSSC.2014.2314436[15] Wu W H, Yao C W, Guo C K, et al. A 14-nm ultra-low jitter fractional-N PLL using a DTC range reduction technique and a reconfigurable dual-core VCO. IEEE J Solid-State Circuits, 2021, 56(12), 3756 doi: 10.1109/JSSC.2021.3111134[16] Jin G F, Feng F, Chen W, et al. A fractional-N sampling PLL with a merged constant-slope DTC and sampling PD. IEEE J Solid-State Circuits, 2024, 59(8), 2407 doi: 10.1109/JSSC.2024.3358564[17] Ru J Z, Palattella C, Geraedts P, et al. A high-linearity digital-to-time converter technique: Constant-slope charging. IEEE J Solid-State Circuits, 2015, 50(6), 1412 doi: 10.1109/JSSC.2015.2414421[18] Li H R, Li J G, Jiang X Y, et al. A 27GHz fractional-N sub-sampling PLL achieving 57.9 fsrms jitter, −249.7dB FoM, and 1.98μs locking time using polarity-reversible SSPD. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 1[19] Shen X, Zhang Z, Li Y, et al. A 0.65V-VDD 10.4-to-11.8GHz fractional-N sampling PLL achieving 73.8fsrms jitter, −271.5dB FoMN, and –61 dBc in-band fractional spur in 40nm CMOS. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 338[20] Rossoni M, Dartizio S M, Tesolin F, et al. A low-jitter fractional-N digital PLL adopting a reverse-concavity variable-slope DTC. IEEE J Solid-State Circuits, 2025, 60(6), 2122 doi: 10.1109/JSSC.2024.3469556[21] Chae M, Jang S, Hwanq C, et al. A 65fsrms-jitter and-272dB-FoMjitter, N 10.1GHz fractional-N digital PLL with a quantization-error-compensating BBPD and an orthogonal-polynomial LMS calibration. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 554[22] Dartizio S M, Buccoleri F, Tesolin F, et al. A fractional-N Bang-Bang PLL based on type-II gear shifting and adaptive frequency switching achieving 68.6 fs-rms total integrated jitter and 1.56 μs locking time. IEEE J Solid-State Circuits, 2022, 57(12), 3538 doi: 10.1109/JSSC.2022.3206955[23] Li H R, Xu T L, Meng X, et al. A 23.2-to-26GHz low-jitter fast-locking sub-sampling PLL based on a function-reused VCO-buffer and a type-I FLL with rapid phase alignment. IEEE J Solid-State Circuits, 2024, 59(12), 3952 doi: 10.1109/JSSC.2024.3458463[24] Liu H Z, Deng W, Jia H K, et al. An ultra-low-jitter fast-hopping fractional-N PLL with LC DTC and hybrid-proportional paths. IEEE J Solid-State Circuits, 2025, 60(3), 785 doi: 10.1109/JSSC.2024.3514870[25] Liu H Z, Deng W, Jia H K, et al. A 0.18-µs-locking-time fractional-N PLL with stochastic gradient descent tuning curve fitting, initial phase error zeroing, and random DSM achieving 44.4-fs jitter at near-integer channel. 2025 IEEE Custom Integrated Circuits Conference (CICC), 2025, 1[26] Zhang H M, Zhu Y Y, Osada M, et al. A 96fsrms jitter, –70.6dBc fractional-spur cascaded PLL employing two MMDs with shared DSM for quantization noise cancellation. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 1[27] Yang D H, Murphy D, Darabi H, et al. A harmonic-mixing PLL architecture for millimeter-wave application. IEEE J Solid-State Circuits, 2022, 57(12), 3552 doi: 10.1109/JSSC.2022.3209614 -
Proportional views