Article Navigation >
Journal of Semiconductors
>
2025
> Uncorrected proof
Citation: |
Lin Cheng, Dongfang Pan. Trends and emerging techniques in isolated power converters[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25040037
****
L Cheng and D F Pan, Trends and emerging techniques in isolated power converters[J]. J. Semicond., 2025, 46(7), 070202 doi: 10.1088/1674-4926/25040037
|
Trends and emerging techniques in isolated power converters
DOI: 10.1088/1674-4926/25040037
CSTR: 32376.14.1674-4926.25040037
More Information-
References
[1] Chen B X. Isolation in digital power supplies using micro-transformers. 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, 2009, 2039 doi: 10.1109/APEC.2009.4802954[2] Lombardo P, Fiore V, Ragonese E, et al. A fully-integrated half-duplex data/power transfer system with up to 40Mb/s data rate, 23mW output power and on-chip 5kV galvanic isolation. 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016, 300 doi: 10.1109/ISSCC.2016.7418026[3] Ragonese E, Spina N, Castorina A, et al. A fully integrated galvanically isolated DC-DC converter with data communication. IEEE Trans Circuits Syst I Regul Pap, 2018, 65(4), 1432 doi: 10.1109/TCSI.2017.2742021[4] Fiore V, Ragonese E, Palmisano G. A fully integrated watt-level power transfer system with on-chip galvanic isolation in silicon technology. IEEE Trans Power Electron, 2017, 32(3), 1984 doi: 10.1109/TPEL.2016.2556939[5] Qin W H, Yang X, Ma S Y, et al. An 800mW fully integrated galvanic isolated power transfer system meeting CISPR 22 Class-B emission levels with 6dB margin. 2019 IEEE International Solid- State Circuits Conference-(ISSCC), 2019, 246 doi: 10.1109/ISSCC.2019.8662349[6] Zhuo Y, Ma S Y, Zhao T T, et al. A 52% peak-efficiency >1W isolated power transfer system using fully integrated magnetic-core transformer. 2019 IEEE International Solid- State Circuits Conference-(ISSCC), 2019, 244 doi: 10.1109/ISSCC.2019.8662301[7] Zhuo Y, Ma S Y, Zhao T T, et al. A 52% peak efficiency > 1-W isolated power transfer system using fully integrated transformer with magnetic core. IEEE J Solid State Circuits, 2019, 54(12), 3326 doi: 10.1109/JSSC.2019.2940333[8] Li L S, Fang X M, Wu R X. An 11MHz fully integrated 5kV isolated DC-DC converter without cross-isolation-barrier feedback. 2020 IEEE International Solid- State Circuits Conference-(ISSCC), 2020, 292 doi: 10.1109/ISSCC19947.2020.9063050[9] Pan D F, Li G L, Miao F T, et al. A 1.2W 51%-peak-efficiency isolated DC-DC converter with a cross-coupled shoot-through-free class-D oscillator meeting the CISPR-32 class-B EMI standard. 2022 IEEE International Solid-State Circuits Conference (ISSCC), 2022, 240 doi: 10.1109/ISSCC42614.2022.9731554[10] Pan D F, Li A Y, Sun W, et al. An isolated DC–DC converter using a cross-coupled shoot-through-free class-D oscillator with low EMI emissions. IEEE J Solid State Circuits, 2024, 59(10), 3457 doi: 10.1109/JSSC.2024.3407599[11] Pan D F, Xu W W, Zhang L T, et al. A 2W 53.2%-peak-efficiency multi-core isolated DC-DC converter with embedded magnetic-core transformer achieving CISPR-32 class-B EMI compliance and <5mV ripple. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 536 doi: 10.1109/ISSCC49661.2025.10904708[12] Pan D F, Li G L, Miao F T, et al. A 1.25W 46.5%-peak-efficiency transformer-in-package isolated DC-DC converter using glass-based fan-out wafer-level packaging achieving 50mW/mm2 power density. 2021 IEEE International Solid-State Circuits Conference (ISSCC), 2021, 468 doi: 10.1109/ISSCC42613.2021.9365955[13] Cheng L, Chen Z H, Yu D Q, et al. A high-efficiency transformer-in-package isolated DC-DC converter using glass-based fan-out wafer-level packaging. Fundam Res, 2024, 4(6), 1407 doi: 10.1016/j.fmre.2023.05.003[14] Xia T, Chen Q J, Wang S J, et al. A 180MHz 45.3%-peak-efficiency isolated converter using Q-downsize class-D power amplifier with inherent shoot-through current blocking and high tolerance for efficiency despite frequency misalignments. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 1 doi: 10.1109/ISSCC49661.2025.10904701[15] Tang J Y, Zhao L, Huang C. A through-power-link hysteretic-controlled capacitive isolated DC–DC converter with enhanced efficiency and common-mode transient immunity. IEEE J Solid State Circuits, 2024, 59(5), 1543 doi: 10.1109/JSSC.2024.3359114[16] Jiang J Q, Tang J Y, Zhao L, et al. A 63% efficiency 1.29-W single-link multiple-output (SLiMO) isolated DC–DC converter using FPC micro-transformer with local voltage and global power regulations. IEEE J Solid State Circuits, 2024, 59(3), 804 doi: 10.1109/JSSC.2023.3330173[17] Jiang J Q, Tang J Y, Zhao L, et al. SLiMO: A 61.8% efficiency single-link multiple-output isolated DC-DC converter using low-cost FPC micro- transformer with local voltage and global power regulation. 2023 IEEE Custom Integrated Circuits Conference (CICC), 2023, 1 doi: 10.1109/CICC57935.2023.10121223[18] Tang J Y, Zhao L, Huang C. A 68.3% efficiency reconfigurable 400-/800-mW capacitive isolated DC-DC converter with common-mode transient immunity and fast dynamic response by through-power-link hysteretic control. 2022 IEEE International Solid-State Circuits Conference (ISSCC), 2022, 1 doi: 10.1109/ISSCC42614.2022.9731748[19] Liu Y, Yao Y, Cheng L, et al. A pseudo hysteretic controlled gap time modulated isolated DC–DC converter with common-mode transient immunity. IEEE J Solid State Circuits, 2025, 60(3), 861 doi: 10.1109/JSSC.2024.3510362[20] Pan D F, Li A Y, Xu W W, et al. A 2.1W 60%-peak-efficiency isolated DC-DC converter with complementary edge-aligned and adaptive over-compensation techniques meeting the CISPR-32 class-B EMI standard. 2024 IEEE European Solid-State Electronics Research Conference (ESSERC), 2024, 589 doi: 10.1109/ESSERC62670.2024.10719414[21] Huang Q A, Pan D F, Chen Z Y, et al. A dual-LC-resonant isolated DC-DC converter achieving 65.4% peak efficiency and inherent backscattering. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 1 doi: 10.1109/ISSCC49661.2025.10904821[22] PMP22845, Isolated 5-V bias supply for automotive CISPR 25, Class 5 emissions. Texas Instruments. Reference Design, 2021 <https://www.ti.comlitughtidt223/tidt223.pdf>[23] Isolated 5-V bias supply for automotive CISPR 25, Class 5 emissions, Reference Design. Texas Instruments, 2021. <https://www.ti.com/lit/ug/tidt223/tidt223.pdf>[24] AN-0971, Recommendations for control of radiated emissions with isopower device. Analog Devices, Inc. 2014. <https://www.analog.com/media/en/technical-documentation/application-notes/AN-0971.pdf>[25] Hu T X, Lu Y, Martins R P, et al. An isolated DC-DC converter with full-duplex communication using a single pair of transformers. IEEE J Solid State Circuits, 2025, 60(3), 1070 doi: 10.1109/JSSC.2024.3445316[26] Hu T X, Huang M, Martins R P, et al. A 750mW, 37% peak efficiency isolated DC-DC converter with 54/18Mb/s full-duplex communication using a single pair of transformers. 2024 IEEE International Solid-State Circuits Conference (ISSCC), 2024, 504 doi: 10.1109/ISSCC49657.2024.10454311[27] Jiang J Q, Zhao L, Tang J Y, et al. A single-link multi-domain-output (SLiMDO) isolated DC-DC converter with passive magnetic flux sharing for local energy distribution and Rx behavior sensing-based global power modulation. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 530 doi: 10.1109/ISSCC49661.2025.10904792[28] Pan D F, Xu W W, Wu X F, et al. A 24V-to-20V 6W 73.2%-peak-efficiency isolated DC-DC converter using a transformer-based supply-generating technique. 2024 IEEE Custom Integrated Circuits Conference (CICC), 2024, 1 doi: 10.1109/CICC60959.2024.10529013[29] Pan D, Xu W, Wu X, et al. A 24–20-V isolated DC–DC converter using a transformer-based supply-generating technique. IEEE Journal of Solid-State Circuits, 2025, early access doi: 10.1109/JSSC.2025.3566939 -
Proportional views