Citation: |
Bingrui Li, Zongnan Wang, Xiyuan Tang. High-precision ADC design techniques in ISSCC 2025[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25050012
****
B R Li, Z N Wang, and X Y Tang, High-precision ADC design techniques in ISSCC 2025[J]. J. Semicond., 2025, 46(7), 070204 doi: 10.1088/1674-4926/25050012
|
High-precision ADC design techniques in ISSCC 2025
DOI: 10.1088/1674-4926/25050012
CSTR: 32376.14.1674-4926.25050012
More Information-
References
[1] Dolev N, Kramer M, Murmann B. A 12-bit, 200-MS/s, 11.5-mW pipeline ADC using a pulsed bucket brigade front-end. 2013 Symposium on VLSI Circuits, 2013, C98[2] Huang S Y, Zhang Z S, He X Y, et al. A 70dB SNDR 80MHz BW filter-embedded pipeline-SAR ADC achieving 172dB FoMs with progressive conversion and floating-charge-transfer amplifier. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 318 doi: 10.1109/ISSCC49661.2025.10904746[3] Zhao H, Zhang X H, Deng Q J, et al. A fully dynamic noise-shaping SAR ADC achieving 120dB SNDR and 189dB FoMs in 1kHz BW. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 306 doi: 10.1109/ISSCC49661.2025.10904778[4] Gao J H, Luan Y H, Ye S Y, et al. A 93.3dB SNDR, 180.4dB FoMs calibration-free noise-shaping pipelined-SAR ADC with cross-stage gain-mismatch-error-shaping technique and negative-R-assisted residue integrator. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 310 doi: 10.1109/ISSCC49661.2025.10904557[5] Wang Z N, Li B R, Tang J J, et al. A 184.8dB-FoMs 1.6MS/s incremental noise-shaping pipeline ADC with single-amplification-based kT/C noise cancellation technique. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 1 doi: 10.1109/ISSCC49661.2025.10904507[6] Chen Z Y, Ye S Y, Gao J H, et al. An easy-drive 16MS/s pipelined-SAR ADC using split coarse-fine input-buffer-sampling scheme and fast robust background inter-stage gain calibration. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 1 doi: 10.1109/ISSCC49661.2025.10904526[7] Zhou Y, Xu B W, Chiu Y. A 12 bit 160 MS/s two-step SAR ADC with background bit-weight calibration using a time-domain proximity detector. IEEE J Solid State Circuits, 2015, 50(4), 920 doi: 10.1109/JSSC.2014.2384025[8] Luan Y H, Xu X H, Gao J H, et al. A 12.2μW 99.6dB-SNDR 184.8dB-FOMs DT zoom PPD ΔΣM with gain-embedded bootstrapped sampler. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 308 doi: 10.1109/ISSCC49661.2025.10904732[9] Ye S Y, Cui J J, Gao J H, et al. A rail-to-rail 3rd-order noise-shaping SAR ADC achieving 105.4dB SFDR with integrated input buffer using continuous-time correlated level shifting. 2025 IEEE International Solid-State Circuits Conference (ISSCC), 2025, 314 doi: 10.1109/ISSCC49661.2025.10904773[10] Gregoire B R, Moon U K. An over-60 dB true rail-to-rail performance using correlated level shifting and an opamp with only 30 dB loop gain. IEEE J Solid State Circuits, 2008, 43(12), 2620 doi: 10.1109/JSSC.2008.2006312[11] Lin D T, Li L, Farahani S, et al. A flexible 500MHz to 3.6GHz wireless receiver with configurable DT FIR and IIR filter embedded in a 7b 21MS/s SAR ADC. IEEE Custom Integrated Circuits Conference 2010, 2010, 1 doi: 10.1109/CICC.2010.5617620[12] Murmann B. ADC performance survey 1997-2024. [Online] Available: https://github.com/bmurmann/ADC-survey -
Proportional views