J. Semicond. >  In Press

NEWS AND VIEWS

Advancing highly efficient and mechanically resilient flexible perovskite-silicon tandem solar cells

Zhaoyang Han1, 2 and Qi Jiang1, 2,

+ Author Affiliations

 Corresponding author: Qi Jiang, qjiang@semi.ac.cn

DOI: 10.1088/1674-4926/25110013CSTR: 10.1088/1674-4926/25110013

PDF

Turn off MathJax



[1]
Werner J, Niesen B, Ballif C. Perovskite/silicon tandem solar cells: Marriage of convenience or true love story? −An overview. Adv Materials Inter, 2018, 5, 1700731 doi: 10.1002/admi.201700731
[2]
Yang G, Deng C Y, Li C W, et al. Towards efficient, scalable and stable perovskite/silicon tandem solar cells. Nat Photonics, 2025, 19, 913 doi: 10.1038/s41566-025-01732-y
[3]
Leijtens T, Bush K A, Prasanna R, et al. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat Energy, 2018, 3(10), 828 doi: 10.1038/s41560-018-0190-4
[4]
Wang Z, Han Z, Chu X, et al. Regulation of wide bandgap perovskite by rubidium thiocyanate for efficient silicon/perovskite tandem solar cells. Adv Mater, 2024, 36(50), 2407681 doi: 10.1002/adma.202407681
[5]
Ugur E, Ali Said A, Dally P, et al. Enhanced cation interaction in perovskites for efficient tandem solar cells with silicon. Science, 2024, 385(6708), 533 doi: 10.1126/science.adp1621
[6]
Liu J, He Y C, Ding L, et al. Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature, 2024, 635(8039), 596 doi: 10.1038/s41586-024-07997-7
[7]
Jia L B, Xia S M, Li J, et al. Efficient perovskite/silicon tandem with asymmetric self-assembly molecule. Nature, 2025, 644(8078), 912 doi: 10.1038/s41586-025-09333-z
[8]
Mariotti S, Köhnen E, Scheler F, et al. Interface engineering for high-performance, triple-halide perovskite−silicon tandem solar cells. Science, 2023, 381(6653), 63 doi: 10.1126/science.adf5872
[9]
Han Z, Wang Z, Xia Z, et al. Uniform phase distribution of wide bandgap perovskite for high-performance perovskite-silicon tandem solar cells. Nat Commun, 2025
[10]
Aydin E, Ugur E, Yildirim B K, et al. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature, 2023, 623(7988), 732 doi: 10.1038/s41586-023-06667-4
[11]
Mailoa J P, Bailie C D, Johlin E C, et al. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl Phys Lett, 2015, 106(12), 121105 doi: 10.1063/1.4914179
[12]
NREL. Best research-cell eifficiency chart. National Renewable Energy Laboratory, 2025
[13]
Ying Z Q, Yang X, Wang X Z, et al. Towards the 10-year milestone of monolithic perovskite/silicon tandem solar cells. Adv Mater, 2024, 36(37), 2311501 doi: 10.1002/adma.202311501
[14]
Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 1961, 32(3), 510 doi: 10.1063/1.1736034
[15]
Shishido H, Sato R, Ieki D, et al. High-efficiency perovskite/silicon tandem solar cells with flexibility. Sol RRL, 2025, 9(11), 2400899 doi: 10.1002/solr.202400899
[16]
Huang Z Q, Li L, Wu T Q, et al. Wearable perovskite solar cells by aligned liquid crystal elastomers. Nat Commun, 2023, 14(1), 1204 doi: 10.1038/s41467-023-36938-7
[17]
Sun Y Q, Li F M, Zhang H, et al. Flexible perovskite/silicon monolithic tandem solar cells approaching 30% efficiency. Nat Commun, 2025, 16(1), 5733 doi: 10.1038/s41467-025-61081-w
[18]
Wang X L, Zheng J M, Ying Z Q, et al. Ultrathin (~30 µm) flexible monolithic perovskite/silicon tandem solar cell. Sci Bull, 2024, 69(12), 1887 doi: 10.1016/j.scib.2024.04.022
[19]
Liu W Z, Liu Y J, Yang Z Q, et al. Flexible solar cells based on foldable silicon wafers with blunted edges. Nature, 2023, 617(7962), 717 doi: 10.1038/s41586-023-05921-z
[20]
Bristow H, Li X L, Babics M, et al. Mitigating delamination in perovskite/silicon tandem solar modules. Sol RRL, 2024, 8(14), 2400289 doi: 10.1002/solr.202400289
[21]
De Bastiani M, Armaroli G, Jalmood R, et al. Mechanical reliability of fullerene/tin oxide interfaces in monolithic perovskite/silicon tandem cells. ACS Energy Lett, 2022, 7(2), 827 doi: 10.1021/acsenergylett.1c02148
[22]
Fang Z, Ding L, Yang Y, et al. Flexible perovskite/silicon tandem solar cell with a dual buffer layer. Nature, 2025 doi: 10.1038/s41586-025-09835-w
[23]
Wang S B, Li W H, Yu C, et al. Flexible perovskite/silicon tandem solar cells with 33.6% efficiency. Nature, 2025 doi: 10.1038/s41586-025-09849-4
Fig. 1.  (a) Schematic diagram of the monolithic perovskite/silicon tandem solar cell based on a double-side textured flexible silicon heterojunction solar cell, scanning electron microscopy (SEM) cross-sectional image on the right shows the perovskite top-cell layers and ~60 μm thin silicon bottom cell. (b) Schematic diagram of conventional atomic layer deposition (ALD) process for compact SnOx layer (left, purging time of 10 s), and loose SnOx layer (right, with significantly reduced purging time) under a chemical vapor deposition (CVD)-like growth mode. (c) Geometric phase analysis (GPA) of high-resolution transmission electron microscope (TEM) images of compact and loose SnOx layer. (d) Steady photoluminescence (PL) spectra of the perovskite (PVSK)/C60/SnOx samples and the PVSK/C60/SnOx/transparent conductive oxide (TCO) samples, where SnOx layers are deposited under different purging times. (e) Current density−voltage (JV) curve and the maximum power output point of one 60-μm thick tandem device, measured by National Renewable Energy Laboratory (NREL) using the asymptotic maximum power scan method. (f) Current−voltage (IV) curves of one M6 wafer-sized (~260 cm2) lightweight tandem device, certified by Fraunhofer ISE CalLab, the inset shows the weight of a complete M6-sized tandem solar cell with 4.386 g and derived a 1.77 W/g power-to-weight ratio. (g) Photograph of flexible perovskite/silicon tandem devices, which can be folded with a bending radius of 15 mm (25 mm). (h) Thermal cycling tests (−40 to 85 °C) for the encapsulated tandem solar cells. (i) Power conversion efficiency (PCE) evolution for wafer-sized lightweight unencapsulated tandem devices as a function of bending cycles, the inset shows PL mapping images of the tandem devices before and after bending test[22].

Fig. 2.  (a) Sketch of the flexible perovskite/silicon tandem with cerium and hydrogen co-doped indium oxide (ICO:H) recombination layer (RL) and in-situ annealed zinc-doped indium oxide (IZO) front electrode. (b) Cross-section SEM images of the flexible tandem; high-angle annular dark-field scanning transmission electron microscopy STEM (HAADF) images with energy-dispersive X-ray spectroscopy (EDX) mapping of wide bandgap perovskite top cell and ICO:H RL on submicron-textured SHJ bottom cell. (c) Density-functional theory (DFT) calculation of absorption energy and charge transfer characteristics at the interface between 4-(3,6-Dimethyl-9H-carbazol-9-yl)butyl phosphonic acid (Me-4PACz) and ICO:H. (d) Kelvin-probe force microscopy (KPFM) images of Me-4PACz anchored ICO:H or ITO. (e) The ultraviolet−visible−near infrared (UV−vis−NIR) spectroscopy of IZO with and without in-situ annealing. (f) The proportion In−O, C−O and −OH species extracted from X-ray photoelectron spectroscopy (XPS) analysis. (g) J−V curves of the control (ITO RL (20 nm), non-annealed IZO) and target (ICO:H (10 nm), annealed IZO) flexible perovskite/silicon tandem with an aperture area of 1.0 cm2, calibrated at China Photovoltaic Testing Center (NPVT). (h) Maximum power point (MPP) tracking of the encapsulated flexible tandems under continuous 1-sun illumination in N2 atmosphere. (i) Bending tests of flexible tandems under compressive stress with a bending radius (Rb) of 17.6 mm (the insert)[23].

[1]
Werner J, Niesen B, Ballif C. Perovskite/silicon tandem solar cells: Marriage of convenience or true love story? −An overview. Adv Materials Inter, 2018, 5, 1700731 doi: 10.1002/admi.201700731
[2]
Yang G, Deng C Y, Li C W, et al. Towards efficient, scalable and stable perovskite/silicon tandem solar cells. Nat Photonics, 2025, 19, 913 doi: 10.1038/s41566-025-01732-y
[3]
Leijtens T, Bush K A, Prasanna R, et al. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat Energy, 2018, 3(10), 828 doi: 10.1038/s41560-018-0190-4
[4]
Wang Z, Han Z, Chu X, et al. Regulation of wide bandgap perovskite by rubidium thiocyanate for efficient silicon/perovskite tandem solar cells. Adv Mater, 2024, 36(50), 2407681 doi: 10.1002/adma.202407681
[5]
Ugur E, Ali Said A, Dally P, et al. Enhanced cation interaction in perovskites for efficient tandem solar cells with silicon. Science, 2024, 385(6708), 533 doi: 10.1126/science.adp1621
[6]
Liu J, He Y C, Ding L, et al. Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature, 2024, 635(8039), 596 doi: 10.1038/s41586-024-07997-7
[7]
Jia L B, Xia S M, Li J, et al. Efficient perovskite/silicon tandem with asymmetric self-assembly molecule. Nature, 2025, 644(8078), 912 doi: 10.1038/s41586-025-09333-z
[8]
Mariotti S, Köhnen E, Scheler F, et al. Interface engineering for high-performance, triple-halide perovskite−silicon tandem solar cells. Science, 2023, 381(6653), 63 doi: 10.1126/science.adf5872
[9]
Han Z, Wang Z, Xia Z, et al. Uniform phase distribution of wide bandgap perovskite for high-performance perovskite-silicon tandem solar cells. Nat Commun, 2025
[10]
Aydin E, Ugur E, Yildirim B K, et al. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature, 2023, 623(7988), 732 doi: 10.1038/s41586-023-06667-4
[11]
Mailoa J P, Bailie C D, Johlin E C, et al. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl Phys Lett, 2015, 106(12), 121105 doi: 10.1063/1.4914179
[12]
NREL. Best research-cell eifficiency chart. National Renewable Energy Laboratory, 2025
[13]
Ying Z Q, Yang X, Wang X Z, et al. Towards the 10-year milestone of monolithic perovskite/silicon tandem solar cells. Adv Mater, 2024, 36(37), 2311501 doi: 10.1002/adma.202311501
[14]
Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 1961, 32(3), 510 doi: 10.1063/1.1736034
[15]
Shishido H, Sato R, Ieki D, et al. High-efficiency perovskite/silicon tandem solar cells with flexibility. Sol RRL, 2025, 9(11), 2400899 doi: 10.1002/solr.202400899
[16]
Huang Z Q, Li L, Wu T Q, et al. Wearable perovskite solar cells by aligned liquid crystal elastomers. Nat Commun, 2023, 14(1), 1204 doi: 10.1038/s41467-023-36938-7
[17]
Sun Y Q, Li F M, Zhang H, et al. Flexible perovskite/silicon monolithic tandem solar cells approaching 30% efficiency. Nat Commun, 2025, 16(1), 5733 doi: 10.1038/s41467-025-61081-w
[18]
Wang X L, Zheng J M, Ying Z Q, et al. Ultrathin (~30 µm) flexible monolithic perovskite/silicon tandem solar cell. Sci Bull, 2024, 69(12), 1887 doi: 10.1016/j.scib.2024.04.022
[19]
Liu W Z, Liu Y J, Yang Z Q, et al. Flexible solar cells based on foldable silicon wafers with blunted edges. Nature, 2023, 617(7962), 717 doi: 10.1038/s41586-023-05921-z
[20]
Bristow H, Li X L, Babics M, et al. Mitigating delamination in perovskite/silicon tandem solar modules. Sol RRL, 2024, 8(14), 2400289 doi: 10.1002/solr.202400289
[21]
De Bastiani M, Armaroli G, Jalmood R, et al. Mechanical reliability of fullerene/tin oxide interfaces in monolithic perovskite/silicon tandem cells. ACS Energy Lett, 2022, 7(2), 827 doi: 10.1021/acsenergylett.1c02148
[22]
Fang Z, Ding L, Yang Y, et al. Flexible perovskite/silicon tandem solar cell with a dual buffer layer. Nature, 2025 doi: 10.1038/s41586-025-09835-w
[23]
Wang S B, Li W H, Yu C, et al. Flexible perovskite/silicon tandem solar cells with 33.6% efficiency. Nature, 2025 doi: 10.1038/s41586-025-09849-4
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 22 Times PDF downloads: 10 Times Cited by: 0 Times

    History

    Received: 17 November 2025 Revised: Online: Accepted Manuscript: 24 November 2025Uncorrected proof: 25 November 2025

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhaoyang Han, Qi Jiang. Advancing highly efficient and mechanically resilient flexible perovskite-silicon tandem solar cells[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25110013 ****Z Y Han and Q Jiang, Advancing highly efficient and mechanically resilient flexible perovskite-silicon tandem solar cells[J]. J. Semicond., 2025, 46(12), 120401 doi: 10.1088/1674-4926/25110013
      Citation:
      Zhaoyang Han, Qi Jiang. Advancing highly efficient and mechanically resilient flexible perovskite-silicon tandem solar cells[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25110013 ****
      Z Y Han and Q Jiang, Advancing highly efficient and mechanically resilient flexible perovskite-silicon tandem solar cells[J]. J. Semicond., 2025, 46(12), 120401 doi: 10.1088/1674-4926/25110013

      Advancing highly efficient and mechanically resilient flexible perovskite-silicon tandem solar cells

      DOI: 10.1088/1674-4926/25110013
      CSTR: 10.1088/1674-4926/25110013
      More Information
      • Zhaoyang Han is a Ph.D. candidate at the Institute of Semiconductors, Chinese Academy of Sciences and University of Chinese Academy of Sciences. His research focuses on wide bandgap perovskite solar cells and perovskite-silicon tandem solar cells
      • Qi Jiang is a professor at the Institute of Semiconductors, Chinese Academy of Sciences and the University of Chinese Academy of Sciences. She received her Ph.D. from the Institute of Semiconductors, Chinese Academy of Sciences in 2018. Then she worked as a postdoc at the University of North Carolina, at Chapel Hill and National Renewable Energy Laboratory from 2018 to 2023. Her research interests include new type semiconductor photoelectronic materials and devices
      • Corresponding author: qjiang@semi.ac.cn
      • Received Date: 2025-11-17
        Available Online: 2025-11-24

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return