| Citation: |
Zhaoyang Han, Qi Jiang. Advancing highly efficient and mechanically resilient flexible perovskite-silicon tandem solar cells[J]. Journal of Semiconductors, 2025, 46(12): 120401. doi: 10.1088/1674-4926/25110013
****
Z Y Han and Q Jiang, Advancing highly efficient and mechanically resilient flexible perovskite-silicon tandem solar cells[J]. J. Semicond., 2025, 46(12), 120401 doi: 10.1088/1674-4926/25110013
|
Advancing highly efficient and mechanically resilient flexible perovskite-silicon tandem solar cells
DOI: 10.1088/1674-4926/25110013
CSTR: 10.1088/1674-4926/25110013
More Information-
References
[1] Werner J, Niesen B, Ballif C. Perovskite/silicon tandem solar cells: Marriage of convenience or true love story? −An overview. Adv Materials Inter, 2018, 5, 1700731 doi: 10.1002/admi.201700731[2] Yang G, Deng C Y, Li C W, et al. Towards efficient, scalable and stable perovskite/silicon tandem solar cells. Nat Photonics, 2025, 19, 913 doi: 10.1038/s41566-025-01732-y[3] Leijtens T, Bush K A, Prasanna R, et al. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat Energy, 2018, 3(10), 828 doi: 10.1038/s41560-018-0190-4[4] Wang Z, Han Z, Chu X, et al. Regulation of wide bandgap perovskite by rubidium thiocyanate for efficient silicon/perovskite tandem solar cells. Adv Mater, 2024, 36(50), 2407681 doi: 10.1002/adma.202407681[5] Ugur E, Ali Said A, Dally P, et al. Enhanced cation interaction in perovskites for efficient tandem solar cells with silicon. Science, 2024, 385(6708), 533 doi: 10.1126/science.adp1621[6] Liu J, He Y C, Ding L, et al. Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature, 2024, 635(8039), 596 doi: 10.1038/s41586-024-07997-7[7] Jia L B, Xia S M, Li J, et al. Efficient perovskite/silicon tandem with asymmetric self-assembly molecule. Nature, 2025, 644(8078), 912 doi: 10.1038/s41586-025-09333-z[8] Mariotti S, Köhnen E, Scheler F, et al. Interface engineering for high-performance, triple-halide perovskite−silicon tandem solar cells. Science, 2023, 381(6653), 63 doi: 10.1126/science.adf5872[9] Han Z, Wang Z, Xia Z, et al. Uniform phase distribution of wide bandgap perovskite for high-performance perovskite-silicon tandem solar cells. Nat Commun, 2025, https://doi.org/10.1038/s41467-025-66480-7[10] Aydin E, Ugur E, Yildirim B K, et al. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature, 2023, 623(7988), 732 doi: 10.1038/s41586-023-06667-4[11] Mailoa J P, Bailie C D, Johlin E C, et al. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl Phys Lett, 2015, 106(12), 121105 doi: 10.1063/1.4914179[12] National Renewable Energy Laboratory (NREL). Best research-cell eifficiency chart. [Accessed: 10 November 2025]. https://www.nrel.gov/pv/cell-efficiency.html[13] Ying Z Q, Yang X, Wang X Z, et al. Towards the 10-year milestone of monolithic perovskite/silicon tandem solar cells. Adv Mater, 2024, 36(37), 2311501 doi: 10.1002/adma.202311501[14] Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 1961, 32(3), 510 doi: 10.1063/1.1736034[15] Shishido H, Sato R, Ieki D, et al. High-efficiency perovskite/silicon tandem solar cells with flexibility. Sol RRL, 2025, 9(11), 2400899 doi: 10.1002/solr.202400899[16] Huang Z Q, Li L, Wu T Q, et al. Wearable perovskite solar cells by aligned liquid crystal elastomers. Nat Commun, 2023, 14(1), 1204 doi: 10.1038/s41467-023-36938-7[17] Sun Y Q, Li F M, Zhang H, et al. Flexible perovskite/silicon monolithic tandem solar cells approaching 30% efficiency. Nat Commun, 2025, 16(1), 5733 doi: 10.1038/s41467-025-61081-w[18] Wang X L, Zheng J M, Ying Z Q, et al. Ultrathin (~30 µm) flexible monolithic perovskite/silicon tandem solar cell. Sci Bull, 2024, 69(12), 1887 doi: 10.1016/j.scib.2024.04.022[19] Liu W Z, Liu Y J, Yang Z Q, et al. Flexible solar cells based on foldable silicon wafers with blunted edges. Nature, 2023, 617(7962), 717 doi: 10.1038/s41586-023-05921-z[20] Bristow H, Li X L, Babics M, et al. Mitigating delamination in perovskite/silicon tandem solar modules. Sol RRL, 2024, 8(14), 2400289 doi: 10.1002/solr.202400289[21] De Bastiani M, Armaroli G, Jalmood R, et al. Mechanical reliability of fullerene/tin oxide interfaces in monolithic perovskite/silicon tandem cells. ACS Energy Lett, 2022, 7(2), 827 doi: 10.1021/acsenergylett.1c02148[22] Fang Z, Ding L, Yang Y, et al. Flexible perovskite/silicon tandem solar cell with a dual buffer layer. Nature, 2025, https://doi.org/10.1038/s41586-025-09835-w[23] Wang S B, Li W H, Yu C, et al. Flexible perovskite/silicon tandem solar cells with 33.6% efficiency. Nature, 2025, https://doi.org/10.1038/s41586-025-09849-4 -
Proportional views



Zhaoyang Han is a Ph.D. candidate at the Institute of Semiconductors, Chinese Academy of Sciences and University of Chinese Academy of Sciences. His research focuses on wide bandgap perovskite solar cells and perovskite-silicon tandem solar cells.
Qi Jiang is a professor at the Institute of Semiconductors, Chinese Academy of Sciences and the University of Chinese Academy of Sciences. Her research interests include new type semiconductor photoelectronic materials and devices.
DownLoad:







