J. Semicond. >  Just Accepted

SHORT COMMUNICATION

Room-temperature electrically injected GaN-based vertical-cavity surface-emitting laser with conductive nanoporous distributed Bragg reflector

Chuanjie Li1, 2, Meixin Feng1, 3, , Jianping Liu1, 3, Aiqin Tian1, 3, , Xuan Li1, Wei Zhou1, Rui Xi1, Shuming Zhang1, 3, Qian Sun1, 3, and Hui Yang1, 2, 3

+ Author Affiliations

 Corresponding author: Meixin Feng, mxfeng2011@sinano.ac.cn; Aiqin Tian, aqtian2012@sinano.ac.cn; Qian Sun, qsun2011@sinano.ac.cn

DOI: 10.1088/1674-4926/25120042CSTR: 32376.14.1674-4926.25120042

PDF

Turn off MathJax



[1]
Iga K. Forty years of vertical-cavity surface-emitting laser: Invention and innovation. Jpn J Appl Phys, 2018, 57(8S2): 08PA01 doi: 10.7567/JJAP.57.08PA01
[2]
Pouladi S, Lee Y G, Kim N I, et al. Inverted junction VCSEL arrays operating at 940 nm with >5 W employing tunnel junction. IEEE Photonics Technol Lett, 2024, 36(23): 1369 doi: 10.1109/LPT.2024.3478745
[3]
Wang Y C, Xia Y B, Tian A Q, et al. Performance enhancement of GaN-based VCSELs by composition-graded structures. Appl Phys Lett, 2025, 127(17): 173305 doi: 10.1063/5.0294456
[4]
Ikeyama K, Kozuka Y, Matsui K, et al. Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors. Appl Phys Express, 2016, 9(10): 102101 doi: 10.7567/APEX.9.102101
[5]
Yang T, Chen Y H, Wang Y C, et al. Green vertical-cavity surface-emitting lasers based on InGaN quantum dots and short cavity. Nano Micro Lett, 2023, 15(1): 223 doi: 10.1007/s40820-023-01189-0
[6]
Ito M, Hamaguchi T, Makino T, et al. Highly efficient operation and uniform characteristics of curved mirror vertical-cavity surface-emitting lasers. Appl Phys Express, 2023, 16(1): 012006 doi: 10.35848/1882-0786/acace8
[7]
Xun M, Pan G Z, Sun Y, et al. Longitudinal multi-cavity coupled VCSELs with narrow linewidth and high single mode power for quantum sensing. J Light Technol, 2024, 42(17): 5949 doi: 10.1109/JLT.2024.3403884
[8]
Muranaga W, Akagi T, Fuwa R, et al. GaN-based vertical-cavity surface-emitting lasers using n-type conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces. Jpn J Appl Phys, 2019, 58: SCCC01
[9]
Elafandy R T, Kang J H, Mi C, et al. Study and application of birefringent nanoporous GaN in the polarization control of blue vertical-cavity surface-emitting lasers. ACS Photonics, 2021, 8(4): 1041 doi: 10.1021/acsphotonics.1c00211
[10]
Palmquist N C, Gee S, Gandrothula S, et al. Characterization of long-cavity GaN vertical-cavity surface-emitting lasers with a topside dielectric lens. Jpn J Appl Phys, 2025, 64(5): 050901 doi: 10.35848/1347-4065/add2b8
[11]
Zhou T F, Zhang C, ElAfandy R, et al. Thermal transport of nanoporous gallium nitride for photonic applications. J Appl Phys, 2019, 125(15): 155106 doi: 10.1063/1.5083151
[12]
Li C J, Feng M X, Liu J Q, et al. GaN-based resonant-cavity light-emitting diode towards a vertical-cavity surface-emitting laser. IEEE J Sel Top Quantum Electron, 2025, 31(2: Pwr. and Effic. Scaling in Semiconductor Lasers): 1700606
[13]
Mishkat-Ul-Masabih S M, Aragon A A, Monavarian M, et al. Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors. Appl Phys Express, 2019, 12(3): 036504 doi: 10.7567/1882-0786/ab0576
[14]
Xu R B, Mei Y, Xu H, et al. Green vertical-cavity surface-emitting lasers based on combination of blue-emitting quantum wells and cavity-enhanced recombination. IEEE Trans Electron Devices, 2018, 65(10): 4401 doi: 10.1109/TED.2018.2866406
Fig. 1.  Schematic structure of the NP-GaN VCSEL.

Fig. 2.  SEM images of (a) dielectric DBR and (b) NP-GaN DBR. (c) Reflectivity measurement results of the dielectric and NP-GaN DBRs.

Fig. 3.  I-V characteristic measurements. (a) Lateral (black line) and vertical (red line) current injections between the n-electrodes. The distances between the lateral and vertical N-electrodes are approximately 190 and 100 μm, respectively. (b) Lateral (black line) and vertical (red line) electrical injection of the as-fabricated VCSEL device.

Fig. 4.  The as-fabricated VCSEL device with a 10-μm aperture under vertical electrical injection. (a) Emission images below (24 mA) and above (26 mA) the threshold current (Ith), (b) EL spectra at 0.9Ith, Ith and 1.1Ith. (c) FWHM and output power as a function of injection current density. (d) Polarization characteristics of the emission below (20 mA) and above (40 mA) the threshold current.

[1]
Iga K. Forty years of vertical-cavity surface-emitting laser: Invention and innovation. Jpn J Appl Phys, 2018, 57(8S2): 08PA01 doi: 10.7567/JJAP.57.08PA01
[2]
Pouladi S, Lee Y G, Kim N I, et al. Inverted junction VCSEL arrays operating at 940 nm with >5 W employing tunnel junction. IEEE Photonics Technol Lett, 2024, 36(23): 1369 doi: 10.1109/LPT.2024.3478745
[3]
Wang Y C, Xia Y B, Tian A Q, et al. Performance enhancement of GaN-based VCSELs by composition-graded structures. Appl Phys Lett, 2025, 127(17): 173305 doi: 10.1063/5.0294456
[4]
Ikeyama K, Kozuka Y, Matsui K, et al. Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AlInN/GaN distributed Bragg reflectors. Appl Phys Express, 2016, 9(10): 102101 doi: 10.7567/APEX.9.102101
[5]
Yang T, Chen Y H, Wang Y C, et al. Green vertical-cavity surface-emitting lasers based on InGaN quantum dots and short cavity. Nano Micro Lett, 2023, 15(1): 223 doi: 10.1007/s40820-023-01189-0
[6]
Ito M, Hamaguchi T, Makino T, et al. Highly efficient operation and uniform characteristics of curved mirror vertical-cavity surface-emitting lasers. Appl Phys Express, 2023, 16(1): 012006 doi: 10.35848/1882-0786/acace8
[7]
Xun M, Pan G Z, Sun Y, et al. Longitudinal multi-cavity coupled VCSELs with narrow linewidth and high single mode power for quantum sensing. J Light Technol, 2024, 42(17): 5949 doi: 10.1109/JLT.2024.3403884
[8]
Muranaga W, Akagi T, Fuwa R, et al. GaN-based vertical-cavity surface-emitting lasers using n-type conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces. Jpn J Appl Phys, 2019, 58: SCCC01
[9]
Elafandy R T, Kang J H, Mi C, et al. Study and application of birefringent nanoporous GaN in the polarization control of blue vertical-cavity surface-emitting lasers. ACS Photonics, 2021, 8(4): 1041 doi: 10.1021/acsphotonics.1c00211
[10]
Palmquist N C, Gee S, Gandrothula S, et al. Characterization of long-cavity GaN vertical-cavity surface-emitting lasers with a topside dielectric lens. Jpn J Appl Phys, 2025, 64(5): 050901 doi: 10.35848/1347-4065/add2b8
[11]
Zhou T F, Zhang C, ElAfandy R, et al. Thermal transport of nanoporous gallium nitride for photonic applications. J Appl Phys, 2019, 125(15): 155106 doi: 10.1063/1.5083151
[12]
Li C J, Feng M X, Liu J Q, et al. GaN-based resonant-cavity light-emitting diode towards a vertical-cavity surface-emitting laser. IEEE J Sel Top Quantum Electron, 2025, 31(2: Pwr. and Effic. Scaling in Semiconductor Lasers): 1700606
[13]
Mishkat-Ul-Masabih S M, Aragon A A, Monavarian M, et al. Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors. Appl Phys Express, 2019, 12(3): 036504 doi: 10.7567/1882-0786/ab0576
[14]
Xu R B, Mei Y, Xu H, et al. Green vertical-cavity surface-emitting lasers based on combination of blue-emitting quantum wells and cavity-enhanced recombination. IEEE Trans Electron Devices, 2018, 65(10): 4401 doi: 10.1109/TED.2018.2866406
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 25 Times PDF downloads: 0 Times Cited by: 0 Times

    History

    Received: 06 January 2026 Revised: Online: Accepted Manuscript: 31 January 2026

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Chuanjie Li, Meixin Feng, Jianping Liu, Aiqin Tian, Xuan Li, Wei Zhou, Rui Xi, Shuming Zhang, Qian Sun, Hui Yang. Room-temperature electrically injected GaN-based vertical-cavity surface-emitting laser with conductive nanoporous distributed Bragg reflector[J]. Journal of Semiconductors, 2026, In Press. doi: 10.1088/1674-4926/25120042 ****C J Li, M X Feng, J P Liu, A Q Tian, X Li, W Zhou, R Xi, S M Zhang, Q Sun, and H Yang, Room-temperature electrically injected GaN-based vertical-cavity surface-emitting laser with conductive nanoporous distributed Bragg reflector[J]. J. Semicond., 2026, accepted doi: 10.1088/1674-4926/25120042
      Citation:
      Chuanjie Li, Meixin Feng, Jianping Liu, Aiqin Tian, Xuan Li, Wei Zhou, Rui Xi, Shuming Zhang, Qian Sun, Hui Yang. Room-temperature electrically injected GaN-based vertical-cavity surface-emitting laser with conductive nanoporous distributed Bragg reflector[J]. Journal of Semiconductors, 2026, In Press. doi: 10.1088/1674-4926/25120042 ****
      C J Li, M X Feng, J P Liu, A Q Tian, X Li, W Zhou, R Xi, S M Zhang, Q Sun, and H Yang, Room-temperature electrically injected GaN-based vertical-cavity surface-emitting laser with conductive nanoporous distributed Bragg reflector[J]. J. Semicond., 2026, accepted doi: 10.1088/1674-4926/25120042

      Room-temperature electrically injected GaN-based vertical-cavity surface-emitting laser with conductive nanoporous distributed Bragg reflector

      DOI: 10.1088/1674-4926/25120042
      CSTR: 32376.14.1674-4926.25120042
      More Information
      • Chuanjie Li is currently working toward the Ph.D. degree at ShanghaiTech University, Shanghai, China. His current research interests include GaN-based VCSEL
      • Qian Sun received his Ph.D. degree from Yale University, New Haven, CT, USA, in 2009. He is currently a Professor with SINANO, CAS, China. His current research interests include Ⅲ-nitride semiconductor materials and devices
      • Corresponding author: mxfeng2011@sinano.ac.cnaqtian2012@sinano.ac.cnqsun2011@sinano.ac.cn
      • Received Date: 2026-01-06
        Available Online: 2026-01-31

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return