Citation: |
Wu Lijuan, Hu Shengdong, Zhang Bo, Li Zhaoji. A novel complementary N+-charge island SOI high voltage device[J]. Journal of Semiconductors, 2010, 31(11): 114010. doi: 10.1088/1674-4926/31/11/114010
****
Wu L J, Hu S D, Zhang B, Li Z J. A novel complementary N+-charge island SOI high voltage device[J]. J. Semicond., 2010, 31(11): 114010. doi: 10.1088/1674-4926/31/11/114010.
|
-
Abstract
A new complementary interface charge island structure of SOI high voltage device (CNI SOI) and its model are presented. CNI SOI is characterized by equidistant high concentration n + -regions on the top and bottom interfaces of dielectric buried layers. When a high voltage is applied to the device, complementary hole and electron islands are formed on the two n + -regions on the top and bottom interfaces. The introduced interface charges effectively increase the electric field of the dielectric buried layer (EI) and reduce the electric field of the silicon layer (ES), which result in a high breakdown voltage (BV). The influence of structure parameters and its physical mechanism on breakdown voltage are investigated for CNI SOI. EI = 731 V/μm and BV = 750 V are obtained by 2D simulation on a 1-μm-thick dielectric layer and 5-μm-thick top silicon layer. Moreover, enhanced field EI and reduced field ES by the accumulated interface charges reach 641.3 V/μm and 23.73 V/μm, respectively. -
References
-
Proportional views