J. Semicond. > 2010, Volume 31 > Issue 4 > 044006

SEMICONDUCTOR DEVICES

Low-field mobility and carrier transport mechanism transition in nanoscale MOSFETs

Liu Hongwei, Wang Runsheng, Huang Ru and Zhang Xing

+ Author Affiliations
DOI: 10.1088/1674-4926/31/4/044006

PDF

Abstract: This paper extends the flux scattering method to study the carrier transport property in nanoscale MOSFETs with special emphasis on the low-field mobility and the transport mechanism transition. A unified analytical expression for the low-field mobility is proposed, which covers the entire regime from drift-diffusion transport to quasi-ballistic transport in 1-D, 2-D and 3-D MOSFETs. Two key parameters, namely the long-channel low-field mobility (μ0) and the low-field mean free path (λ0), are obtained from the experimental data, and the transport mechanism transition in MOSFETs is further discussed both experimentally and theoretically. Our work shows that λ0 is available to characterize the inherent transition of the carrier transport mechanism rather than the low-field mobility. The mobility reduces in the MOSFET with the shrinking of the channel length; however, λ0 is nearly a constant, and λ0 can be used as the “entry criterion”to determine whether the device begins to operate under quasi-ballistic transport to some extent.

Key words: mobility

1

Advances in mobility enhancement of ITZO thin-film transistors: a review

Feilian Chen, Meng Zhang, Yunhao Wan, Xindi Xu, Man Wong, et al.

Journal of Semiconductors, 2023, 44(9): 091602. doi: 10.1088/1674-4926/44/9/091602

2

Investigation on the passivation, band alignment, gate charge, and mobility degradation of the Ge MOSFET with a GeOx/Al2O3 gate stack by ozone oxidation

Lixing Zhou, Jinjuan Xiang, Xiaolei Wang, Wenwu Wang

Journal of Semiconductors, 2022, 43(1): 013101. doi: 10.1088/1674-4926/43/1/013101

3

Mobility enhancement techniques for Ge and GeSn MOSFETs

Ran Cheng, Zhuo Chen, Sicong Yuan, Mitsuru Takenaka, Shinichi Takagi, et al.

Journal of Semiconductors, 2021, 42(2): 023101. doi: 10.1088/1674-4926/42/2/023101

4

Mobility impact on compensation performance of AMOLED pixel circuit using IGZO TFTs

Congwei Liao

Journal of Semiconductors, 2019, 40(2): 022403. doi: 10.1088/1674-4926/40/2/022403

5

Research progress and challenges of two dimensional MoS2 field effect transistors

N Divya Bharathi, K Sivasankaran

Journal of Semiconductors, 2018, 39(10): 104002. doi: 10.1088/1674-4926/39/10/104002

6

Investigation of multilayer domains in large-scale CVD monolayer graphene by optical imaging

Yuanfang Yu, Zhenzhen Li, Wenhui Wang, Xitao Guo, Jie Jiang, et al.

Journal of Semiconductors, 2017, 38(3): 033003. doi: 10.1088/1674-4926/38/3/033003

7

Detection of lead ions with AlGaAs/InGaAs pseudomorphic high electron mobility transistor

Jiqiang Niu, Yang Zhang, Min Guan, Chengyan Wang, Lijie Cui, et al.

Journal of Semiconductors, 2016, 37(11): 114003. doi: 10.1088/1674-4926/37/11/114003

8

The investigation of the zero temperature coefficient point of power MOSFET

Bowen Zhang, Xiaoling Zhang, Wenwen Xiong, Shuojie She, Xuesong Xie, et al.

Journal of Semiconductors, 2016, 37(6): 064011. doi: 10.1088/1674-4926/37/6/064011

9

Analysis of charge density and Fermi level of AlInSb/InSb single-gate high electron mobility transistor

S. Theodore Chandra, N. B. Balamurugan, M. Bhuvaneswari, N. Anbuselvan, N. Mohankumar, et al.

Journal of Semiconductors, 2015, 36(6): 064003. doi: 10.1088/1674-4926/36/6/064003

10

Compact analytical model for single gate AlInSb/InSb high electron mobility transistors

S. Theodore Chandra, N.B. Balamurugan, G. Subalakshmi, T. Shalini, G. Lakshmi Priya, et al.

Journal of Semiconductors, 2014, 35(11): 114003. doi: 10.1088/1674-4926/35/11/114003

11

Unstrained InAlN/GaN heterostructures grown on sapphire substrates by MOCVD

Bo Liu, Jiayun Yin, Yuanjie Lü, Shaobo Dun, Xiongwen Zhang, et al.

Journal of Semiconductors, 2014, 35(11): 113005. doi: 10.1088/1674-4926/35/11/113005

12

A surface-potential-based model for AlGaN/AlN/GaN HEMT

Jie Wang, Lingling Sun, Jun Liu, Mingzhu Zhou

Journal of Semiconductors, 2013, 34(9): 094002. doi: 10.1088/1674-4926/34/9/094002

13

Averaged hole mobility model of biaxially strained Si

Jianjun Song, He Zhu, Jinyong Yang, Heming Zhang, Rongxi Xuan, et al.

Journal of Semiconductors, 2013, 34(8): 082003. doi: 10.1088/1674-4926/34/8/082003

14

SPICE compatible analytical electron mobility model for biaxial strained-Si-MOSFETs

Amit Chaudhry, J. N. Roy, S. Sangwan

Journal of Semiconductors, 2011, 32(5): 054001. doi: 10.1088/1674-4926/32/5/054001

15

Nanoscale strained-Si MOSFET physics and modeling approaches: a review

Amit Chaudhry, J. N. Roy, Garima Joshi

Journal of Semiconductors, 2010, 31(10): 104001. doi: 10.1088/1674-4926/31/10/104001

16

OTFT with Bilayer Gate Insulator and Modificative Electrode

Bai Yu, Khizar-ul-Haq, M.A.Khan, Jiang Xueyin, Zhang Zhilin, et al.

Journal of Semiconductors, 2008, 29(4): 650-654.

17

MOCVD Growth of InN Films on Sapphire Substrates

Xiao Hongling, Wang Xiaoliang, Yang Cuibai, Hu Guoxin, Ran Junxue, et al.

Chinese Journal of Semiconductors , 2007, 28(S1): 260-262.

18

k·p and Monte Carlo Studies of Hole Mobility in Strained-Si pMOS Inversion Layers

Zhao Ji, Zou Jianping, Tan Yaohua, Yu Zhiping

Chinese Journal of Semiconductors , 2006, 27(12): 2144-2149.

19

Study of Electron Mobility in 4H-SiC Buried-Channel MOSFETs

Gao Jinxia, Zhang Yimen, Zhang Yuming

Chinese Journal of Semiconductors , 2006, 27(2): 283-289.

20

AlGaN/GaN High Electron Mobility Transistors on Sapphires with fmax of 100GHz

Li Xianjie, Zeng Qingming, Zhou Zhou, Liu Yugui, Qiao Shuyun, et al.

Chinese Journal of Semiconductors , 2005, 26(11): 2049-2052.

  • Search

    Advanced Search >>

    GET CITATION

    Liu Hongwei, Wang Runsheng, Huang Ru, Zhang Xing. Low-field mobility and carrier transport mechanism transition in nanoscale MOSFETs[J]. Journal of Semiconductors, 2010, 31(4): 044006. doi: 10.1088/1674-4926/31/4/044006
    Liu H W, Wang R S, Huang R, Zhang X. Low-field mobility and carrier transport mechanism transition in nanoscale MOSFETs[J]. J. Semicond., 2010, 31(4): 044006. doi: 10.1088/1674-4926/31/4/044006.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4390 Times PDF downloads: 2223 Times Cited by: 0 Times

    History

    Received: 18 August 2015 Revised: 17 December 2009 Online: Published: 01 April 2010

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Liu Hongwei, Wang Runsheng, Huang Ru, Zhang Xing. Low-field mobility and carrier transport mechanism transition in nanoscale MOSFETs[J]. Journal of Semiconductors, 2010, 31(4): 044006. doi: 10.1088/1674-4926/31/4/044006 ****Liu H W, Wang R S, Huang R, Zhang X. Low-field mobility and carrier transport mechanism transition in nanoscale MOSFETs[J]. J. Semicond., 2010, 31(4): 044006. doi: 10.1088/1674-4926/31/4/044006.
      Citation:
      Liu Hongwei, Wang Runsheng, Huang Ru, Zhang Xing. Low-field mobility and carrier transport mechanism transition in nanoscale MOSFETs[J]. Journal of Semiconductors, 2010, 31(4): 044006. doi: 10.1088/1674-4926/31/4/044006 ****
      Liu H W, Wang R S, Huang R, Zhang X. Low-field mobility and carrier transport mechanism transition in nanoscale MOSFETs[J]. J. Semicond., 2010, 31(4): 044006. doi: 10.1088/1674-4926/31/4/044006.

      Low-field mobility and carrier transport mechanism transition in nanoscale MOSFETs

      DOI: 10.1088/1674-4926/31/4/044006
      • Received Date: 2015-08-18
      • Accepted Date: 2009-11-08
      • Revised Date: 2009-12-17
      • Published Date: 2010-03-29

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return