
SEMICONDUCTOR DEVICES
Abstract: This paper extends the flux scattering method to study the carrier transport property in nanoscale MOSFETs with special emphasis on the low-field mobility and the transport mechanism transition. A unified analytical expression for the low-field mobility is proposed, which covers the entire regime from drift-diffusion transport to quasi-ballistic transport in 1-D, 2-D and 3-D MOSFETs. Two key parameters, namely the long-channel low-field mobility (μ0) and the low-field mean free path (λ0), are obtained from the experimental data, and the transport mechanism transition in MOSFETs is further discussed both experimentally and theoretically. Our work shows that λ0 is available to characterize the inherent transition of the carrier transport mechanism rather than the low-field mobility. The mobility reduces in the MOSFET with the shrinking of the channel length; however, λ0 is nearly a constant, and λ0 can be used as the “entry criterion”to determine whether the device begins to operate under quasi-ballistic transport to some extent.
Key words: mobility
1 |
Advances in mobility enhancement of ITZO thin-film transistors: a review Feilian Chen, Meng Zhang, Yunhao Wan, Xindi Xu, Man Wong, et al. Journal of Semiconductors, 2023, 44(9): 091602. doi: 10.1088/1674-4926/44/9/091602 |
2 |
Lixing Zhou, Jinjuan Xiang, Xiaolei Wang, Wenwu Wang Journal of Semiconductors, 2022, 43(1): 013101. doi: 10.1088/1674-4926/43/1/013101 |
3 |
Mobility enhancement techniques for Ge and GeSn MOSFETs Ran Cheng, Zhuo Chen, Sicong Yuan, Mitsuru Takenaka, Shinichi Takagi, et al. Journal of Semiconductors, 2021, 42(2): 023101. doi: 10.1088/1674-4926/42/2/023101 |
4 |
Mobility impact on compensation performance of AMOLED pixel circuit using IGZO TFTs Congwei Liao Journal of Semiconductors, 2019, 40(2): 022403. doi: 10.1088/1674-4926/40/2/022403 |
5 |
Research progress and challenges of two dimensional MoS2 field effect transistors N Divya Bharathi, K Sivasankaran Journal of Semiconductors, 2018, 39(10): 104002. doi: 10.1088/1674-4926/39/10/104002 |
6 |
Investigation of multilayer domains in large-scale CVD monolayer graphene by optical imaging Yuanfang Yu, Zhenzhen Li, Wenhui Wang, Xitao Guo, Jie Jiang, et al. Journal of Semiconductors, 2017, 38(3): 033003. doi: 10.1088/1674-4926/38/3/033003 |
7 |
Detection of lead ions with AlGaAs/InGaAs pseudomorphic high electron mobility transistor Jiqiang Niu, Yang Zhang, Min Guan, Chengyan Wang, Lijie Cui, et al. Journal of Semiconductors, 2016, 37(11): 114003. doi: 10.1088/1674-4926/37/11/114003 |
8 |
The investigation of the zero temperature coefficient point of power MOSFET Bowen Zhang, Xiaoling Zhang, Wenwen Xiong, Shuojie She, Xuesong Xie, et al. Journal of Semiconductors, 2016, 37(6): 064011. doi: 10.1088/1674-4926/37/6/064011 |
9 |
S. Theodore Chandra, N. B. Balamurugan, M. Bhuvaneswari, N. Anbuselvan, N. Mohankumar, et al. Journal of Semiconductors, 2015, 36(6): 064003. doi: 10.1088/1674-4926/36/6/064003 |
10 |
Compact analytical model for single gate AlInSb/InSb high electron mobility transistors S. Theodore Chandra, N.B. Balamurugan, G. Subalakshmi, T. Shalini, G. Lakshmi Priya, et al. Journal of Semiconductors, 2014, 35(11): 114003. doi: 10.1088/1674-4926/35/11/114003 |
11 |
Unstrained InAlN/GaN heterostructures grown on sapphire substrates by MOCVD Bo Liu, Jiayun Yin, Yuanjie Lü, Shaobo Dun, Xiongwen Zhang, et al. Journal of Semiconductors, 2014, 35(11): 113005. doi: 10.1088/1674-4926/35/11/113005 |
12 |
A surface-potential-based model for AlGaN/AlN/GaN HEMT Jie Wang, Lingling Sun, Jun Liu, Mingzhu Zhou Journal of Semiconductors, 2013, 34(9): 094002. doi: 10.1088/1674-4926/34/9/094002 |
13 |
Averaged hole mobility model of biaxially strained Si Jianjun Song, He Zhu, Jinyong Yang, Heming Zhang, Rongxi Xuan, et al. Journal of Semiconductors, 2013, 34(8): 082003. doi: 10.1088/1674-4926/34/8/082003 |
14 |
SPICE compatible analytical electron mobility model for biaxial strained-Si-MOSFETs Amit Chaudhry, J. N. Roy, S. Sangwan Journal of Semiconductors, 2011, 32(5): 054001. doi: 10.1088/1674-4926/32/5/054001 |
15 |
Nanoscale strained-Si MOSFET physics and modeling approaches: a review Amit Chaudhry, J. N. Roy, Garima Joshi Journal of Semiconductors, 2010, 31(10): 104001. doi: 10.1088/1674-4926/31/10/104001 |
16 |
OTFT with Bilayer Gate Insulator and Modificative Electrode Bai Yu, Khizar-ul-Haq, M.A.Khan, Jiang Xueyin, Zhang Zhilin, et al. Journal of Semiconductors, 2008, 29(4): 650-654. |
17 |
MOCVD Growth of InN Films on Sapphire Substrates Xiao Hongling, Wang Xiaoliang, Yang Cuibai, Hu Guoxin, Ran Junxue, et al. Chinese Journal of Semiconductors , 2007, 28(S1): 260-262. |
18 |
k·p and Monte Carlo Studies of Hole Mobility in Strained-Si pMOS Inversion Layers Zhao Ji, Zou Jianping, Tan Yaohua, Yu Zhiping Chinese Journal of Semiconductors , 2006, 27(12): 2144-2149. |
19 |
Study of Electron Mobility in 4H-SiC Buried-Channel MOSFETs Gao Jinxia, Zhang Yimen, Zhang Yuming Chinese Journal of Semiconductors , 2006, 27(2): 283-289. |
20 |
AlGaN/GaN High Electron Mobility Transistors on Sapphires with fmax of 100GHz Li Xianjie, Zeng Qingming, Zhou Zhou, Liu Yugui, Qiao Shuyun, et al. Chinese Journal of Semiconductors , 2005, 26(11): 2049-2052. |
Article views: 4390 Times PDF downloads: 2223 Times Cited by: 0 Times
Received: 18 August 2015 Revised: 17 December 2009 Online: Published: 01 April 2010
Citation: |
Liu Hongwei, Wang Runsheng, Huang Ru, Zhang Xing. Low-field mobility and carrier transport mechanism transition in nanoscale MOSFETs[J]. Journal of Semiconductors, 2010, 31(4): 044006. doi: 10.1088/1674-4926/31/4/044006
****
Liu H W, Wang R S, Huang R, Zhang X. Low-field mobility and carrier transport mechanism transition in nanoscale MOSFETs[J]. J. Semicond., 2010, 31(4): 044006. doi: 10.1088/1674-4926/31/4/044006.
|
Journal of Semiconductors © 2017 All Rights Reserved 京ICP备05085259号-2