Citation: |
Wanjun Yan, Chunhong Zhang, Zhongzheng Zhang, Quan Xie, Benhua Guo, Shiyun Zhou. The optical-electrical properties of doped β-FeSi2[J]. Journal of Semiconductors, 2013, 34(10): 103003. doi: 10.1088/1674-4926/34/10/103003
****
W J Yan, C H Zhang, Z Z Zhang, Q Xie, B H Guo, S Y Zhou. The optical-electrical properties of doped β-FeSi2[J]. J. Semicond., 2013, 34(10): 103003. doi: 10.1088/1674-4926/34/10/103003.
|
The optical-electrical properties of doped β-FeSi2
DOI: 10.1088/1674-4926/34/10/103003
More Information
-
Abstract
By using the pseudo-potential plane-wave method of first principles based on the density function theory, the geometrical, electronic structures and optical properties of FeSi1.875M0.125 (M=B, N, Al, P) were calculated and analyzed. The calculated structural parameters depend strongly on the kinds of dopants and sites. The total energy calculations for substitution of dopants at the SiI and the SiⅡ sites revealed that Al and P prefer the SiI sites, whereas B and N prefer the SiⅡ sites. The calculations predict that B-and Al-doped β-FeSi2 show p-type conduction, while N-and P-doped show n-type. Optical property calculations show that N-doping has little influence on the complex dielectric function of β -FeSi2; B-, N-, Al-and P-doping can enhance the electronic transition, refractive index, and reflection effect in the low-energy range, and weaken the reflection effect at the max peak of reflectivity. These results can offer theoretical guidance for the design and application of optoelectronic material β -FeSi2. -
References
[1] Lange H. Electronic properties of semiconducting silicides. Phys Status Solidi B, 1997, 201(1):3 doi: 10.1002/(ISSN)1521-3951[2] Bost M, Mahan J. Optical properties of semiconducting iron disilicide thin films. J Appl Phys, 1985, 58(7):2696 doi: 10.1063/1.335906[3] Leong D, Harry M, Reeson K, et al. A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5μm. Nature, 1997, 387(6634):686 http://www.nature.com/nature/journal/v387/n6634/abs/387686a0.html?foxtrotcallback=true[4] Maeda Y. Semiconducting β -FeSi2 towards optoelectronics and photonics. Thin Solid Films, 2007, 515(22):8118 doi: 10.1016/j.tsf.2007.02.023[5] Arushanov E, Lisunov K, Vinzelberg H, et al. Hopping conductivity and spectrum of localized carriers in β -FeSi2:Mn. Moldavian Journal of the Physical Sciences, 2009, 8(N1):49 http://downloads.hindawi.com/journals/jpol/2014/827043.xml[6] Arushanov E, Schön J, Lange H. Transport properties of Cr-doped β -FeSi2. Thin Solid Films, 2001, 381(2):282 doi: 10.1016/S0040-6090(00)01757-0[7] Maeda Y, Terai Y, Itakura M. Enhancement of photoresponse properties of β -FeSi2/Si heterojunctions by Al doping. Opt Mater, 2005, 27(5):920 doi: 10.1016/j.optmat.2004.08.036[8] Terai Y, Maeda Y. Photoluminescence enhancement in impurity doped β -FeSi2. Opt Mater, 2005, 27(5):925 doi: 10.1016/j.optmat.2004.08.037[9] Tani J, Kido H. Electrical properties of Co-doped and Ni-doped β -FeSi2. J Appl Phys, 1998, 84(3):1408 doi: 10.1063/1.368174[10] Tani J, Kido H. Thermoelectric properties of Pt-doped β -FeSi2. J Appl Phys, 2000, 88(10):5810 doi: 10.1063/1.1322597[11] Van Ek J, Turchi P, Sterne P. Fe, Ru, and Os disilicides:electronic structure of ordered compounds. Phys Rev B, 1996, 54(11):7897 doi: 10.1103/PhysRevB.54.7897[12] Tani J I, Kido H. Geometrical and electronic structures of β -FeSi1.875X0.125 (X=B, N, Al or P). Jpn J Appl Phys, Part 1, 2002, 41(11A):6426 doi: 10.1007/s10858-007-9193-3[13] Tani J I, Kido H. First principle calculation of the geometrical and electronic structure of impurity-doped β -FeSi2 semiconductors. J Solid State Chem, 2002, 163(1):248 doi: 10.1006/jssc.2001.9399[14] Yan W J, Xie Q. First principle calculation of the electronic structure and optical properties of impurity-doped β -FeSi2 semiconductors. Journal of Semiconductors, 2008, 29(6):1141 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=07101005&flag=1[15] Yan W J, Zhou S Y, Xie Q, et al. First principle study of electronic structure and optical properties for Co-doped β -FeSi2. Acta Optica Sinica, 2011, 31(6):165 http://www.phys.lsu.edu/~jarrell/LA-SiGMA/fourth_annual/LA-SiGMAY4ReportJune16Version.txt[16] Dusausoy Y, Protas J, Wandji R, et al. Structure crystalline du disiliciure de fer, FeSi2β. Acta Crystallographica Section B:Structural Crystallography and Crystal Chemistry, 1971, 27(6):1209 doi: 10.1107/S0567740871003765[17] Segall M, Lindan P J D, Probert M, et al. First-principles simulation:ideas, illustrations and the CASTEP code. J Phys:Condensed Matter, 2002, 14(11):2717 doi: 10.1088/0953-8984/14/11/301[18] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77(18):3865 doi: 10.1103/PhysRevLett.77.3865[19] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13(12):5188 doi: 10.1103/PhysRevB.13.5188[20] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B, 1990, 41(11):7892 doi: 10.1103/PhysRevB.41.7892[21] Yan W J, Xie Q, Zhang J M, et al. Theoretical study of interband optical transitions in semiconducting iron disilicide β -FeSi2. Chinese Journal of Semiconductors, 2007, 28(9):1381 http://www.oalib.com/paper/1521440[22] Shen X C. Spectrum and optical property of semiconductor. Beijing:Science Press, 1992(in Chinese) -
Proportional views